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Department of Computer Science, The Graduate Center of the City University of New York

cbaskent@gc.cuny.edu www.canbaskent.net

Introduction

In this paper, we consider public announcement logic (PAL,
henceforth) in several different geometric models, and prove
its completeness of those models. Moreover, we also con-
sider some applications of our ideas in different fields vary-
ing from game theory to epistemic logic. What makes our
work novel is the fact that PAL has never been investigated
in geometric and topological models with further applica-
tions.

Topological Semantics for Modal Logic

Recall that a topological space S = 〈S, σ〉 is a structure
with a set S and a collection σ of subsets of S satisfying the
following axioms:

1. The empty set and S are in σ,

2. The union of any collection of sets in σ is also in σ

3. The intersection of a finite collection of sets in σ is also
in σ

Our main operator is interior operator I which returns the
interior of a given set. A topological model M is a triple
〈S, σ, v〉 where S = 〈S, σ〉 is a topological space, and v
is a valuation function. The basic modal language L has a
countable set of proposition letters P , a truth constant �, the
usual Boolean operators ¬ and ∧, and a modal operator �.
When we are in topological models, we will use the symbol
I for �, and C for ♦ after the interior and closure operators
respectively. We will call the set of points that satisfy ϕ in
M the extension of ϕ, and denote as (ϕ)M. The extension
of a modal formula in model M, then, is given as follows
(Iϕ)M = I((ϕ)M). Now, the model semantics of modal
operators in topological models is given as follows.

M, s |= Iϕ iff ∃U ∈ σ.(s ∈ U ∧ ∀t ∈ U ,
M, t |= ϕ)

M, s |= Cϕ iff ∀U ∈ σ.(s ∈ U → ∃t ∈ U ,
M, t |= ϕ)

It is well known that the basic modal logic is complete with
respect to the given semantics.
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Subset Space Logic

Subset space logic (SSL, henceforth) was presented in early
90s as a bimodal logic to formalize reasoning about sets and
points (Moss and Parikh 1992). The language of SSL has
two modal operators K and �. A subset space model is a
triple S = 〈S, σ, v〉 where S is a non-empty set, σ is a col-
lection of subsets (not necessarily a topology), v is a valua-
tion function. Semantics of SSL for modal operators is given
inductively as follows.

s, U |= Kϕ iff t, U |= ϕ for all t ∈ U
s, U |= �ϕ iff s, V |= ϕ for all V ∈ σ such

that s ∈ V ⊆ U

The axioms of SSL are as follows: K operator is S5, the
� operator is S4, and K�ϕ → �Kϕ. Moreover, SSL is
complete and decidable (Moss and Parikh 1992).

Public Announcement Logic

Public announcement logic is a way to represent changes in
knowledge. A truthful announcement ϕ is made, and conse-
quently, the agents updates their epistemic states by elim-
inating the possible states where ϕ is false (Plaza 1989).
Notationwise, the formula [ϕ]ψ is intended to mean that af-
ter the public announcement of ϕ, ψ holds. The language
of PAL will be that of multi-agent (multi-modal) epistemic
logic with an additional public announcement operator [∗].
Let M = 〈W, {R}i∈I , V 〉 be a Kripke model. For modal
operators, we have the following semantics.

M, w |= Kiϕ iff M, v |= ϕ for each v
such that (w, v) ∈ Ri

M, w |= [ϕ]ψ iff M, w |= ϕ implies M|ϕ,w |= ψ

Here, M|ϕ is defined as 〈W ′, {R′
i}i∈I , V

′〉 where W ′ =
W ∩(ϕ)M; R′

i = Ri∩(W ′×W ′), and V ′(p) = V (p)∩W ′.
Moreover, PAL is complete and decidable (Plaza 1989).

Subset Space PAL
Let S = 〈S, σ〉. Announcement of ϕ gives Sϕ = 〈S|ϕ, σϕ〉
where S|ϕ = (ϕ) and σϕ = {Uϕ : Uϕ = U ∩ (ϕ) =
∅, for each U ∈ σ}. Then the corresponding semantics can
be suggested as follows:

s, U |= [ϕ]ψ iff s, U |= ϕ implies s, Uϕ |= ψ

The language of the topologic public announcement logic
interpreted in subset spaces is given as follows:
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p | ⊥ | ¬ϕ | ϕ ∧ ψ | �ϕ | Kϕ | [ϕ]ψ
Theorem 1. Axioms of the basic PAL are sound in subset
space logic.

The following axiomatize the topologic-PAL along with
the axiomatization of SSL:

1. [ϕ]p ↔ (ϕ → p)

2. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Kψ ↔ (ϕ → K[ϕ]ψ)

5. [ϕ]�ψ ↔ (ϕ → �[ϕ]ψ)

Theorem 2. Topologic PAL is complete and decidable.

Topological PAL

Let T = 〈T, τ, v〉 be a topological model and ϕ be an
announcement. Define Tϕ = 〈Tϕ, τϕ, vϕ〉 where Tϕ =
T ∩ (ϕ), τϕ = {O ∩ Tϕ : O ∈ τ} and vϕ = v ∩ Tϕ.
Observe that τ here is a topology. The semantics for the
public announcements in topological models is then given
as follows.

T , s |= [ϕ]ψ iff T , s |= ϕ implies Tϕ, s |= ψ

The reduction axioms for PAL in topological spaces are
given as follows.

1. [ϕ]p ↔ (ϕ → p)

2. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Iψ ↔ (ϕ → I[ϕ]ψ)

Theorem 3. Topological PAL is complete and decidable.

Applications

Announcement Stabilization For a model M and a for-
mula ϕ, we define the announcement limit limϕ M as the
first model which is reached by successive announcements
of ϕ that no longer changes after the last announcement is
made. Announcement limits exist in both finite and infinite
models (van Benthem and Gheerbrant 2010). In topological
models, we observe the following.

Theorem 4. For some formula ϕ and some topological
model M , it may take more than ω stage to reach the limit
model limϕ M .

Theorem 5. Limit models exist in topological models.

Therefore, Kripke models and topological models differ
in announcement stabilization.

Backward Induction (BI) Consider the backward induc-
tion solution for games where the player traces back his
moves to develop a winning strategy. Notice that the Au-
mann’s BI solution requires common knowledge of ratio-
nality (Aumann 1995). Recently, it has been shown that in
any game tree model M taken as a PAL model, limrational M
is the actual subtree computed by the BI procedure where
the proposition rational means that “at the current node, no

player has chosen a strictly dominated move in the past com-
ing here” (van Benthem and Gheerbrant 2010). Therefore,
the announcement of node-rationality produces the same re-
sult as the backward induction procedure. Each backward
step in the BI procedure can then be obtained by the public
announcement of node rationality. However, there seems to
be a problem. The admissibility of limit models can take
more than ω steps in topological models. Therefore, based
on the theorem we just stated, the BI procedure can take
more than ω steps.
Theorem 6. In topological models of games, under the as-
sumption of rationality, the backward induction procedure
can take more than ω steps.

This is indeed a problem about the attainability in infinite
games: how can a player continue playing the game when
she hit the limit ordinal ω-th step in the backward induction
procedure?

Persistence Let us now discuss stabilization in SSL
framework. We already have a similar notion within the SSL
context. A persistent formula in a model M is the formula ϕ
whose truth is independent from the subsets in M . In other
words, ϕ is persistent if for all states s and subsets V ⊆ U ,
we have s, U |= ϕ impies s, V |= ϕ. Clearly, Boolean for-
mulas are persistent in every model.
Theorem 7. Let M be a model and ϕ be persistent in M .
Then, for any formula χ and neighborhood situation (s, U),
if s, U |=, then s, U |= [χ]ϕ. In other words, true persistent
formulas are immune to the public announcements.

In other words, we can have some formulas in SSL frame-
work that are immune to the announcements.
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