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Some non-classical approaches to the
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Abstract
In this article, we discuss a well-known self-referential paradox in epistemic game theory, the Brandenburger–Keisler paradox.
We approach the paradox from two different perspectives, non-well-founded set theory and paraconsistent logic, and provide
models in which the paradox is solved.
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1 Introduction and motivation

1.1 Introduction

In this article, we consider a well-known epistemic game theoretical paradox, and provide various
alternative models in which the paradoxical statement becomes satisfiable. For this task, we resort to
various non-classical frameworks, and reformulate the paradoxical statement in them. By achieving
this, first we provide a richer toolkit that can be used in epistemic game theoretical formalisms, and
secondly imply that the choice of classical and traditional models in epistemic game theory seems
rather arbitrary.

The Brandenburg–Keisler paradox (‘BK paradox’, henceforth) is a two-person self-referential
paradox in epistemic game theory [6]. In short, for players Ann and Bob, the BK paradox arises
when we consider the following statement ‘Ann believes that Bob assumes that Ann believes that
Bob’s assumption is wrong’, and ask the question if ‘Ann believes that Bob’s assumption is wrong’,
where Bob’s assumption is the sentence that ‘Ann believes that Bob’s assumption is wrong.’ In this
case, we have two possible answers to the question.

If the answer to the above question is a ‘yes’, then Ann does believe that Bob’s assumption
is wrong, which means that she believes that the statement ‘Bob’s assumption is wrong’ is wrong.
Therefore, Ann believes that Bob’s assumption is correct. But, initially she believed that this assump-
tion was wrong. This creates a contradiction. On the other hand, if the answer is ‘no’, then she does
not believe that Bob’s assumption is wrong, which means that Ann believes that Bob’s assumption
is correct. However, this contradicts the assumption that ‘Ann believes that Bob’s assumption is
wrong.’ This is a contradiction, too. Both possible answers to the question create a contradiction.
Thus, we obtain a paradox. The BK paradox, as the above reasoning demonstrates, can be seen as
a two-person Russell’s paradox.

From a logical perspective, there are two main reasons as to why the BK argument turns out to be
paradoxical. First, the limitations of set theory present some restrictions on the mathematical models
that are used to describe self-referentiality and circularity in formal languages. In other words, sets
are assumed to be well-ordered due to ZF(C) set theory that admits the axiom of foundation. It can
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2 The Brandenburger–Keisler paradox

be deduced from this axiom that no set can be an element of itself. On the other hand, in non-well-
founded set theory, the axiom of foundation is replaced by the anti-foundation axiom that leads to,
among many other things, generating sets that are members of themselves [2, 24]. Therefore, we
claim that adopting non-well-founded set theory suggests a new approach to the paradox, and game
theory in general. The power of non-well-founded set theory comes from its genuine methods to
deal with circularity [4, 26].

Secondly, the limitations of classical logic introduce various metaphysical assumptions to the
mathematical models. What makes the BK argument a logical paradox is the principium contra-
dictionis, which suggests that contradictions are impossible. Paraconsistent (and dialetheic) logics
disagree with this assumption, and argue that some contradictions can be true, and contradictions do
not necessarily trivialize the logic [7, 9, 28, 30]. The BK paradox is essentially a self-referential para-
dox, and similar to any other paradox of the same kind, it can be analysed from a category theoretical
or algebraic point of view [1, 38]. Moreover, paraconsistent logics present some strong algebraic and
category theoretical structures. In this work, we make the connection between self-referentiality and
paraconsistency clearer by presenting some (counter-)models based on our non-classical approach.

Apart from pursuing the subject for its own merits, we implicitly underline in this article that
the original BK paper gives no argument as to why game theoretical agents need to be represented
by a theory that relies on classical logic and ZFC set theory, and whether this formal framework is
sufficient to express interactive and complex epistemic situations in games. Briefly, in this article,
we first show that adopting the non-well-founded set theory makes a significant change in the
structure of the paradox. We achieve this by constructing non-well-founded counter-models for
the BK argument. Secondly, by resorting to paraconsistent logic, we also demonstrate that the BK
argument can be satisfied in some situations.

1.2 The paradox

The BK paradox can be considered as a game theoretical two-person version of Russell’s paradox.
Let us call the players Ann and Bob with associated type space sets U a and U b respectively. Now,
consider the following statement that we call the ‘BK sentence’:

Ann believes that Bob assumes that Ann believes that Bob’s assumption is wrong.

A two-person Russell-like paradox arises if one asks the question whether Ann believes that Bob’s
assumption is wrong. In both cases, as we explained earlier, we obtain a contradiction. Thus, the
BK sentence is impossible. This is a strong paradox, namely it is not possible to dissolve it by using
some other formalizations within the limits of classical modal logic and set theory.

Brandenburger and Keisler used belief sets to represent players’ beliefs. The model (U a,U b,Ra,Rb)
that they consider is called a belief model where Ra ⊆U a ×U b and Rb ⊆U b ×U a. The expression
Ra(x,y) represents that in state x, Ann believes that the state y is possible for Bob, and vice versa for
Rb(y,x). We will put Ra(x)={y :Ra(x,y)}, and similarly for Rb(y). At a state x, we say Ann believes
P⊆U b if Ra(x)⊆P. Now, a semantics for the interactive belief structures can be given. We use two
different operators � and ♥ which stand for belief and assumption operators, respectively, with the
following semantics.

x |=�abϕ iff ∀y∈U b.Ra(x,y) implies y |=ϕ
x |=♥abϕ iff ∀y∈U b.Ra(x,y) iff y |=ϕ
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In addition to the above semantics for the belief and assumption operators, a modal defini-
tion for these operators can be given [6]. First, define an interactive belief frame as the struc-
ture (W ,P,U a,U b) with a binary relation P⊆W ×W , and disjoint sets U a and U b such that
(U a,U b,Pa,Pb) is a belief model with U a ∪U b =W , Pa =P∩U a ×U b, and Pb =P∩U b ×U a. Now,
for a given valuation function that assigns propositional variables to subsets of W , the semantics of
the belief and assumption modalities are given as follows.

x |=�abϕ iff w |=Ua ∧∀y(P(x,y)∧y |=Ub implies y |=ϕ)
x |=♥abϕ iff w |=Ua ∧∀y(P(x,y)∧y |=Ub iff y |=ϕ)

The semantics of the assumption modality as above was originally given by Brandenburger and
Keisler. However, as Pacuit underlined, a similar modality was also discussed by Humberstone not
in a game theoretical setting [16, 27].

A belief structure (U a,U b,Ra,Rb) is called assumption complete with respect to a set of predicates
� on U a and U b if for every predicate P∈� on U b, there is a state x∈U a such that x assumes P,
and for every predicate Q∈� on U a, there is a state y∈U b such that y assumes Q. We will use
special propositions Ua and Ub with the following meaning: w |=Ua if w∈U a, and similarly for Ub.
Namely, Ua is true at each state for player Ann, and Ub for player Bob.

Brandenburger and Keisler showed that no belief model is complete for its first-order language.
Therefore, ‘not every description of belief can be represented’ with belief structures [6]. The incom-
pleteness of the belief structures is due to the holes in the model. A model, then, has a hole at ϕ if
either Ub ∧ϕ is satisfiable but ♥abϕ is not, or Ua ∧ϕ is satisfiable but ♥baϕ is not. A big hole is then
defined by using the belief modality � instead of the assumption modality ♥.

In the original paper, the authors make use of the following lemma before identifying the holes
in the system. First, let us define a special propositional symbol D with the following valuation
D={w∈W : (∀z∈W )[P(w,z)→¬P(z,w)]}.
LEMMA 1.1 ([6])

1. If ♥abUb is satisfiable, then �ab�ba�ab♥baUa →D is valid.
2. ¬�ab♥ba(Ua ∧D) is valid.

Based on this lemma, the authors observe that there is no complete belief models. Here, we give
the theorem in two forms.

THEOREM 1.2 ([6])
• First-order version: every belief model M has either a hole at U a, a hole at U b, a big hole at

one of the formulas
(i) ∀x.Pb(y,x)
(ii) x believes ∀x.Pb(y,x)
(iii) y believes [x believes ∀x.Pb(y,x)]

a hole at the formula
(iv) D(x)

or a big hole at the formula
(v) y assumes D(x)

Thus, there is no belief model that is complete for a language L that contains the tautologically
true formulas and formulas (i)–(v).

• Modal version: there is either a hole at Ua, a hole at Ub, a big hole at one of the formulas

♥baUa, �ab♥baUa, �ba�ab♥baUa
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a hole at the formula Ua ∧D, or a big hole at the formula ♥ba(Ua ∧D). Thus, there is no complete
interactive frame for the set of all modal formulas built from Ua, Ub and D.

Thus, in this model, there are some descriptions of beliefs that cannot be represented, including
the BK sentence. The model relies on sets that are assumed to admit well-ordering in a classical
logical framework. This observation is our starting point in this article.

1.3 Related literature and motivation

Due to its considerable impact on the various branches of game theory and logic, the BK paradox
has gained an increasing interest in the literature. Now, we present a brief survey of the work that
influenced the original BK paradox paper, and the work that is influenced by it.

A general framework for self-referential paradoxes was discussed earlier by Yanofsky in 2003
[38]. In his paper, Yanofsky used Lawvere’s category theoretical arguments in some well-known
mathematical arguments such as Cantor’s diagonalization, Russell’s paradox and Gödel’s incom-
pleteness theorems. Lawvere, on the other hand, discussed self-referential paradoxes in Cartesian
closed categories in his early paper that appeared in 1969 [18]. Most recently, Abramsky and Zvesper
used Lawvere’s arguments to analyse the BK paradox in a category theoretical framework [1].

Pacuit approached the paradox from a modal logical perspective and presented a detailed investi-
gation of the paradox in neighbourhood models and in hybrid systems [27]. Neighbourhood models
are used to represent modal logics weaker than K, and can be considered as weak versions of topo-
logical semantics [8]. This argument was then extended to assumption-incompleteness in modal
logics [39]. Mariotti et al., on the other hand, used compact belief models to represent interactive
belief structures in a topological framework with further topological restrictions [23].

*

As we mentioned earlier, we approach the paradox from two different non-classical perspectives.
However, before presenting the technical results, it is important to argue as to why and how such
methods can be applicable to epistemic game theory.

1.3.1 Non-well-founded set theory in games

Non-well-founded (NWF) set theory is a mathematical theory of sets where the axiom of foundation
is replaced by the anti-foundation axiom which is due to Mirimanoff [24]. Decades later, the axiom
was re-formulated by Aczel within the domain of graph theory [2]. In NWF set theory, we can have
true statements such as ‘x∈x’, and such statements present interesting properties in game theory.
NWF theories, in this respect, are natural candidates to represent circularity [4].

To the best of our knowledge, Lismont introduced non-well-founded type spaces to show the
existence of universal belief spaces [21]. Then, Heifetz used NWF sets to represent type spaces and
obtained rather sophisticated results [14]. He mapped a given belief space to its NWF version, and
then proved that in the NWF version, epimorphisms become equalities. Harsanyi also noted earlier
that circularity might be needed to express infinitary hierarchy of beliefs.

It seems to me that the basic reason why the theory of games with incomplete information has
made so little progress so far lies in the fact that these games give rise, or at least appear to
give rise, to an infinite regress in reciprocal expectations on the part of the players. In such
a game player 1’s strategy choice will depend on what he expects (or believes) to be player
2’s payoff function U2, as the latter will be an important determinant of player 2’s behavior in
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the game. But his strategy choice will also depend on what he expects to be player 2’s first-
order expectation about his own payoff function U1. Indeed player 1’s strategy choice will also
depend on what he expects to be player 2’s second-order expectation - that is, on what player
1 thinks that player 2 thinks that player 1 thinks about player 2’s payoff function U2... and so
on ad infinitum.
[13]

Note that Harsanyi’s concern for infinite regress or circularity is related to the epistemics of the
game. However, some other ontological concerns can also be raised about the type spaces, and the
way we define the states in the type spaces. In this respect, Heifetz motivated his approach, which
is related to our perspective here, by arguing that NWF type spaces can be used ‘once states of
nature and types would no longer be associated with states of the world, but constitute their very
definition.’ [14, (emphasis in original)]. This is, indeed, a prolific approach to Harsanyi type spaces
to represent uncertainty. Here is Heifetz on the very same issue.

Nevertheless, one may continue to argue that a state of the world should indeed be a circular,
self-referential object: A state represents a situation of human uncertainty, in which a player
considers what other players may think in other situations, and in particular about what they may
think there about the current situation. According to such a view, one would seek a formulation
where states of the world are indeed self-referring mathematical entities.
[14, p. 204].

Notice that the paradoxical BK sentence appears in situations where the aforementioned belief
interaction between the players assumes a central role. Yet, the classical model which is based on a
well-founded set theory does not seem rich enough to express the level of interactiveness that the
epistemic games require. However, we should not over-play our hand. It is important to note that
NWF set theory is not immune to some of the problems that the classical set theory suffers from.
For example, Russell’s paradox is not solved in a NWF setting, and the subset relation stays the
same in NWF theory [26]. The reason is quite straight-forward. As Heifetz also noted, ‘Russell’s
paradox applies to the collection of all sets which do not contain themselves, not to the collection of
sets which do contain themselves’ [14, (emphasis in original)]. Therefore, we do not expect NWF
set theory to completely solve or avoid the BK paradox. We will briefly revisit this issue when we
discuss category theoretical tools.

The opponent of the use of NWF set theory might argue that it must be taken with a grain of salt.
In this manner, Gerbrandy noted the following:

... [T]here are many ‘more’ Kripke models than there are possibilities of knowledge structures:
each possibly corresponds [to] a whole class of bisimilar, but structurally different, models. In
other words, a semantics for modal logic in the form of Kripke models has a finer structure
than a semantics in terms of non-well-founded sets.
[11]

In this work, we will observe how using an NWF background set theory can effect the BK paradox.

1.3.2 Paraconsistency in games

Paraconsistent logics allow us to construct belief models that are inconsistency-friendly. In para-
consistent models, contradictions do not necessarily trivialize the theory. Surprising enough, such
methods have not been widely employed in game theory. Additionally, paraconsistent logics can be

 by guest on M
arch 30, 2015

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:00 16/3/2015 jzv001.tex] Paper Size: a4 paper Job: JIGPAL Page: 6 1–20
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formalized by using a variety of mathematical methods including modal, topological, algebraic and
category theoretical techniques. Some of such techniques are familiar to game theorists, yet they
have not been extended to build a connection between non-classical logics and game theory. The
lack of the aforementioned connection is one of our motivations in this article.

Also, notice that paraconsistent logics have originally been developed to analyse paradoxical
situations, and to develop logical frameworks that can admit paradoxes without leading to trivialities
[7, 9, 29]. Therefore, investigating the BK paradox within a paraconsistent framework seems only
natural.

An interesting application of paraconsistency has been dialogical and discursive logics [17, 31, 32].
Similar to Hintikkan game semantics, dialogical logics present a pragmatical semantics for a variety
of logics. The game element in such systems is not very strong and central. Akin to Hintikka’s game
semantics, the moves are specified syntactically, and the elements of rationality, strategies (mixed
or pure) and epistemics are not directly evident in dialogical games. Nevertheless, they take the very
first step to introduce the notion of paraconsistency in game-like situations. The literature on the
connection between logic and games is rich [34]. Yet, the relation between non-classical logics and
games is not widely studied. This article is an attempt to fill this gap.

2 Non-Well Founded set theoretical approach

We start with defining belief models using NWF sets. What we call an NWF model is a tuple
M = (W ,V ) where W is a non-empty NWF set (hyperset, for short), and V is a valuation assigning
propositional variables to the elements of W . The semantics of (basic) modal logic in the NWF
setting is given as follows where we use the symbol |=+ to represent the satisfaction relation in a
NWF model [11].

M ,w |=+ �ϕ iff ∃v∈w such that M ,v |=+ϕ
M ,w |=+ �ϕ iff ∀v.v∈w implies M ,v |=+ϕ

Based on this definition, we can now give a non-standard semantics for the belief and assumption
modalities �ij and ♥ij , respectively, for i,j∈{a,b}.

M ,w |=+ �ijϕ iff M ,w |=+ Ui ∧
∀v(v∈w∧M ,v |=+ Uj implies M ,v |=+ϕ)

M ,w |=+ ♥ijϕ iff M ,w |=+ Ui ∧
∀v(v∈w∧M ,v |=+ Uj iff M ,v |=+ϕ)

Several comments on the NWF semantics are in order here. First, notice that this definition of
NWF semantics for belief and assumption modalities depends on the earlier modal definition of
those operators given in [6, 11]. Secondly, belief or assumption of a formula ϕ at a state w is defined
in terms of the truth of ϕ at the states that constitutes w, including possibly w itself. Therefore, these
definitions address the philosophical and foundational points that Heifetz made about the uncertainty
in type spaces. We call a belief state w∈W a Quine state if w={w}. Similarly, a state w is called
an urelement if it is not the empty set, and it can be a member of a set but cannot have members.
Finally, we call a set A transitive if a∈A and b∈a, then b∈A.

For example, consider the model W ={w,v} with V (p)={w} and V (q)={v} with a language with
two propositional variables for simplicity. Let us assume that both w and v are Quine states. What
does it mean to say that the player a assumes p at a Quine state w in NFW belief models? The
following theorem establishes how belief and assumption operators work in Quine states.
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THEOREM 2.1
Let M = (W ,V ) be an NWF belief model with disjoint type spaces U a and U b respectively for two
players a and b. If w∈U i is a Quine state or an urelement belief state for i∈{a,b}, then i assumes
ϕ at w if and only if M ,w �|=+ϕ. Moreover, i believes in any formula ψ at w.

PROOF. Let us start with considering the Quine states.
Without loss of generality, let w∈U a where w is a Quine state. Suppose w |=+ ♥abϕ. Since w∈U a,

w |=+ Ua. Since, w∈w, and U a and U b are disjoint, we have w �|=+ Ub. Therefore, since w |=+ ♥abϕ,
we conclude w �|=+ϕ.

For the converse direction, suppose that w �|=+ϕ. Since w∈w, and w �|=+ Ub the biconditional is
satisfied. Moreover, since w∈U a, w |=+Ua. Therefore, w |=+ ♥abϕ.

Similarly, now, without loss of generality, let w∈U a be an urelement. Then, w |=+ Ua. For the
left-to-right direction, note that since there is no v∈w, the conditional is vacuously satisfied. For
the right-to-left direction, suppose w �|=+ϕ. Since, w /∈w and w �|=+ Ub, the biconditional is satisfied
again.

The proof for the belief operator follows immediately from the definitions for Quine states and
urelements as assumption implies belief.

Notice that the above proof heavily depends on the fact that the type spaces for the players are
assumed to be disjoint. Let us now see how belief models change once we allow the intersection of
NWF type spaces.

THEOREM 2.2
Let M = (W ,V ) be an NWF belief model for two players a and b where U a and U b are not necessarily
disjoint. For a Quine state w and different i,j∈{a,b}, w |=+ ♥ij
 if and only if w∈U a ∩U b. In other
words, Quine states with true assumptions belong to the both players.

PROOF. From left-to-right direction, assume without loss of generality that the Quine state w is in
U a. So, w |=+ Ua. Suppose w |=+ ♥ab
. Now, we will show that w∈U b.

By the definition of the assumption modality, and the fact that 
 is everywhere true, we observe
that w |=+ Ub. Thus, w∈U b as well which gives w∈U a ∩U b.

From right-to-left direction, assume that w∈U a ∩U b, where w is a Quine state. Thus, w |=+ Ua and
w |=+ Ub. Thus, ∀v(v∈w∧v |=+ Ub) is satisfied. Also, by definition, 
 is satisfied everywhere, hence
v |=+ 
. Therefore, by definition, we have w |=+ ♥ab
. By a symmetric argument, one can easily
show w |=+ ♥ba
. Thus, we conclude that for a Quine state w and different i,j∈{a,b}, w |=+ ♥ij
.

This concludes the proof.

A game-theoretical implication of Theorem 2.2 is worth mentioning. Notice that Quine states
correspond to the states that are reflexive. In other words, at a Quine state w, player i considers w
possible for player j. Thus, such a state w is forced to be in the intersection of the type spaces.

On the other hand, intersecting type spaces do not seem to create a problem for belief models.
To overcome this issue, one can introduce a turn function from the space of the belief model to the
set of players assigning states to players. The functional definition of this construction necessitates
that every state should be assigned to a unique player. Therefore, the game can determine whose
turn it is at Quine atoms. Additionally, urelements, since they cannot have elements, are end states
in games. At such states, players do not consider any states possible for the other players.

Now, based on the NWF semantics we gave earlier, it is not difficult to see that the following
formulas discussed in the original paper are still valid as before if we maintain the assumption of
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the disjointness of type spaces.

�abUb ↔Ua, �baUa ↔Ub, �abUa ↔⊥, �baUb ↔⊥

Furthermore, the following formulas are not valid as before.

�abUb →Ub, �abUb →�ba�abUb, �abUb →�ab�abUb

However, for the sake of the completeness of our arguments, let us, for the moment, allow that
type spaces may not be disjoint.

Consider an NWF belief model (W ,V ) where w={w} with U a =U b =W . In such a model
�abUa ↔⊥ fails, but �abUa ↔
 is satisfied. Similar observations can be made for �baUb ↔⊥ and
�baUb ↔
. Similarly, all �abUb →Ub, �abUb →�ba�abUb, and �abUb →�ab�abUb are satisfied
in the aforementioned NWF model.

Now, our aim is to construct an NWF belief model in which the Lemma 1.1 fails. For our purposes,
however, we still maintain the assumption that the type spaces be disjoint as in the original BK paper.

As a first step, we redefine the diagonal set in the NWF setting. Recall that, in the standard case,
diagonal set D is defined with respect to the accessibility relation P which we defined earlier. In
NWF case, we will use membership relation for that purpose. We put D+ :={w∈W :∀v∈W .(v∈
w→w /∈v)}. We also define D+ as the propositional symbol with the valuation set D+.

Now, we observe how the NWF models make a difference in the context of the BK paradox.
Notice that BK argument relies on two lemmas which we have mentioned earlier in Lemma 1.1.
Now, we present counter-models to Lemma 1.1 in NWF theory.

PROPOSITION 2.3
In an NWF belief structure, if ♥abUb is satisfiable, then the formula �ab�ba�ab♥baUa ∧¬D+ is also
satisfiable.

PROOF. Let W ={w,v} with w={v}, v={w} where U a ={w} and U b ={v}. To maintain the disjoint-
ness of the types, assume that neither w nor v is transitive.

Then, w |=+ ♥abUb since all states in b’s type space is assumed by a at w. Similarly, v |=+ ♥baUa

as all states in a’s type space is assumed by b at v. Then, w |=+ �ab♥baUa. Continuing this way, we
conclude, w |=+ �ab�ba�ab♥baUa.

However, by design, w �|=+ D+ since v∈w and w∈v. Thus, the formula �ab�ba�ab♥baUa ∧¬D+

is satisfiable as well.

PROPOSITION 2.4
The formula �ab♥ba(Ua ∧D+) is satisfiable in some NWF belief model.

PROOF. Take a non-transitive model (W ,V ) with W ={w,v,u,t} where w={v,w}, v={u}, and u={t}
where u /∈ t. Let U a ={w,u}, and U b ={v,t}. Now, observe that the formula Ua ∧D+ is satisfiable only
at u (as w∈w, w does not satisfy Ua ∧D+). Now, v |=+ ♥ba(Ua ∧D+). Finally, w |=+ �ab♥baUa ∧D+.
Note that even if w∈w as w /∈U b, by definition of the box modality, w satisfies �ab♥baUa ∧D+.

Therefore, the Lemma 1.1 is refuted in NWF belief models. Notice that Lemma 1.1 is central in
Brandenburger and Keisler’s proof of the incompleteness of belief structures. We now construct a
counter-model for Theorem 1.2 in the NWF setting using hypersets.

Consider the following counter-model. Let W ={w,v,u,t,r,s,x,y,z} with w={v,w}, v={u}, u=
{t} (u /∈ t), r ={v,t,s,y}, s={w,u,r,x,z}, x={x,s}, y={y,x}, z={z,y} where U a ={w,u,r,x,z} and
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The Brandenburger–Keisler paradox 9

U b ={v,t,s,y}. Now, step by step, we observe the following.

• U∧D+ is satisfied only at u, since we have w∈w, r ∈s∧s∈r, x∈x and z∈z
• No hole at Ua as s |=+ ♥baUa

• No hole at Ub as r |=+ ♥abUb

• No big hole at ♥baUa as x |=+ �ab♥baUa

• No big hole at �ab♥baUa as y |=+ �ba�ab♥baUa

• No big hole at �ba�ab♥baUa as z |=+ �ab�ba�ab♥baUa

• No hole at Ua ∧D+ as v |=+ ♥ba(Ua ∧D+)
• No big hole at ♥ba(Ua ∧D+) as w |=+ �ab♥ba(Ua ∧D+)

The crucial point in the semantical evaluation of big holes is the fact that the antecedent of the
conditional in the definition of the box modality is not satisfied if some elements of the current states
are not in the desired type space. Therefore, the box modality is still satisfied if the current state has
some elements from the same type space. This helped us to construct the counter-model.

This counter-model shows that Theorem 1.2 in its stated form does not hold in NWF belief
structures. Yet, we have to be careful here. Our counter model does not establish the fact that NWF
belief models are complete. It does, however, establish the fact that they do not have the same holes
as the standard belief models. We will revisit this question later on, and give an answer from a
category theoretical perspective.

3 Paraconsistent approach

Paraconsistency is the umbrella term for logical systems where ex contradictione quodlibet fails.
Namely, in paraconsistent logics, for some formulas ϕ,ψ , we have ϕ,¬ϕ ��ψ . The semantical
equivalence of this proof theoretical rule is that some contradictory statements are satisfiable in
paraconsistent models. Endorsing paraconsistent logic does not necessarily entail that all contra-
dictions are true. It simply means that the existence of contradictions does not trivialize the model
while absurdity (⊥) always leads to trivial theories. Thus, in paraconsistent logics, there are some
contradictions which are not absurd.

Paraconsistent logics can be captured by using several algebraic, topological and category the-
oretical formalisms. We will approach paraconsistency from such directions, and analyse the BK
paradox from within these formalisms.

3.1 Algebraic and category theoretical approach

A recent work on the BK paradox shows the general pattern of self-referential paradoxical cases,
and gives some positive results including a fixed-point theorem [1]. In this section, we instantiate the
fixed-point results of the aforementioned reference to some other mathematical structures that are
inherently inconsistency friendly. This will allow us to build a counter-model for the BK paradox.

There has been offered a variety of different logical and algebraic formalisms to represent para-
consistent logics [29]. First, we discuss co-Heyting algebras as they provide a broader perspective
for paraconsistency.

DEFINITION 3.1
Let L be a bounded distributive lattice. If there is a binary operation ⇒:L×L→L such that for all
x,y,z∈L,

x≤ (y⇒z) iff (x∧y)≤z,

then we call (L,⇒) a Heyting algebra.
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10 The Brandenburger–Keisler paradox

Dually, if we have a binary operation \:L×L→L such that

(y\z)≤x iff y≤ (x∨z),

then we call (L,\) a co-Heyting algebra. We call ⇒ implication, \ subtraction.

Some immediate examples of co-Heyting algebras are the closed subsets of a given topological
space, and subtopoi of a given topos [5, 19, 25, 29].

The operators ⇒ and \ give rise to two different negations. The intuitionistic negation ¬̇ is defined
as ¬̇ϕ≡ϕ→0 while the paraconsistent negation ∼ as ∼ϕ≡1\ϕ where 0 and 1 are the bottom and
the top elements of the lattice respectively. Therefore, ¬̇ϕ is the largest element disjoint from ϕ, and
∼ϕ is the smallest element whose join with ϕ gives the top element 1 [33]. In a Boolean algebra
both intuitionistic and paraconsistent negations coincide, and give the usual Boolean negation where
we interpret ϕ⇒ψ as ¬ϕ∨ψ , and ϕ\ψ as ϕ∧¬ψ with the Boolean negation sign ¬. Algebraic
structures such as co-Heyting algebras can be approached from a category theoretical point of
view, which was used to analyse the BK paradox. Such results are based on Lawvere’s celebrated
theorem of 1969. Before discussing Lawvere’s argument, we need to define weakly point surjective
maps.

DEFINITION 3.2
An arrow f :A×A→B is called weakly point surjective if for every p :A→B, there is an x :1→A
such that for all y :1→A where 1 is the terminal object, we have p◦y= f ◦〈x,y〉 :1→B. In this case,
we say, p is represented by x.

We still need some basic concepts from the category theory. Let us mention them here for the
completeness of our treatment. A category is Cartesian closed (CCC for short, henceforth), if it has
a terminal object, and admits products and exponentiation. A set X is said to have the fixed-point
property for a function f , if there is an element x∈X such that f (x)=x. Category theoretically, an
object X is said to have the fixed-point property if and only if for every endomorphism f :X →X ,
there is x :1→X with xf =x [18].

THEOREM 3.3 ([18], Lawvere’s Lemma)
In any Cartesian closed category, if there exists an object A and a weakly point-surjective morphism
g :A→Y A, then Y has the fixed-point property for g.

It was observed that CCC condition can be relaxed, and Lawvere’s Theorem works for categories
that have only finite products [1].1

What is the connection then between Theorem 3.3 and the BK paradox? Abramsky and Zvesper
showed that it is possible to reduce Lawvere’s Lemma to the BK paradox and vice versa [1]. Let us
briefly mention the argument here.

First of all, the authors observe that under the assumptions of interactive belief models, every
unary operator admits a fixed point. They define the predicate p(x0) as follows:

p(x0)=∃y.(Ra(x0,y)∧Rb(y,x0))

1This point was already made by Lawvere and Schanuel in Conceptual Mathematics. Thanks to Noson Yanofsky for
pointing this out.
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The Brandenburger–Keisler paradox 11

Notice that this predicate stands for the diagonal set we have defined earlier. Based on this formulation
and under the assumptions of interactive belief models, they define the following:

q(x)=∃y.(Ra(x,y)∧Rb(y,x))

p(x)=O(q(x))

Then, Abramsky and Zvesper observe that q(x0) is the fixed point of the unary O operator, which
can be verified given the above statements: Substitute x0 for x in q(x) to obtain ∃y.(Ra(x0,y)∧
Rb(y,x0)), which is p(x0). On the other hand, as p(x)=O(q(x)), we observe that p(x0)=O(q(x0)).
Thus, O(q(x0))=q(x0) yielding that q(x0) is a fixed-point for the unary operator O. Here, the authors
note that the BK sentence is obtained if O is taken as the classical negation operator as ¬q(x0)=q(x0)
is impossible in classical Boolean logic. Now, what needs to be done is to find a weakly point
surjective mapping that acts as the fixed point q(x0) on a CCC. The authors achieve it in a categorical
logic by reformulating the weakly point surjective mappings, and then showing that fixed points still
exist, generating the BK sentence. In other words, Abramsky and Zvesper reduced the Lawvere’s
Theorem (Theorem 3.3) to the following.

THEOREM 3.4
[1] Given the following two assumptions for all predicates p on U a, every unary operator O has a
fixed point.

• Assumption 1: Ra(x0)⊆{y :Rb(y)={x :p(x)}}
• Assumption 2: ∃y.Ra(x0,y)

This approach relies on Theorem 3.3 and requires a CCC which gives us some more freedom to
go beyond classical logic. Now, we will inquire if the same category theoretical qualities carry over
to some other logics, particularly to paraconsistent logic. Let us start by investigating the category
theoretical properties of co-Heyting algebras and the category of hypersets. First, recall that the
category of Heyting algebras is a CCC. A canonical example of a Heyting algebra is the set of
opens in a topological space [3]. The objects of such a category will be the open sets. The unique
morphisms in that category exists from O to O′ if O⊆O′. What about the co-Heyting algebras? We
now state the following dual statement.

PROPOSITION 3.5
Co-Heyting algebras are Cartesian closed categories.

PROOF. Let (L,\) be a co-Heyting algebra. First, observe that the element 0 is the terminal element
(dual of the 1 in Heyting algebra). Secondly, for x,y in L, the product exists and is defined as x∧y
as x∧y≤x, and x∧y≤y. Moreover, x≤y and x≤z imply that x≤y∧z. Thirdly, the exponent xy is
defined as x∧¬y. Notice that we also write this as x\y. The evaluation of subtraction is x≤ (x\y)∨y.
Unravelling the definition, we observe that the definition is sound:

x≤ (x\y)∨y= (x∧¬y)∨y= (x∨y)∧(¬y∨y)=x∨y

as we always have x≤x∨y. Thus, the terminal object, finite products and exponents exist in (L,\)
rendering it a CCC.

EXAMPLE 3.6
As we have mentioned, the co-Heyting algebra of the closed sets in a topology is a well-known
example of a CCC. Similar to the arguments that show that open set topologies are CCC, we can
observe that closed set topologies are CCC as well.
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12 The Brandenburger–Keisler paradox

Given two objects C1,C2, we define the unique arrow from C1 to C2, if C1 ⊇C2. The product is
the union of C1 and C2 as the finite union of closed sets exists in a topology. The exponent CC2

1 is
then defined as Clo(C1 ∩C2) where C1 is the complement of C1.

Now, we have the following result based on Theorems 3.3 and 3.4.

THEOREM 3.7
In a co-Heyting algebra, if there is an object A and a weakly point-surjective morphism g :A→Y A,
then Y has the fixed-point property. Therefore, there exists a co-Heyting algebraic model with a
satisfiable BK sentence.

PROOF. As we already observed, co-Heyting algebras are CCCs. Take one: (L,\). Let L be the
object, and take \ as the morphism. We first show that the join mapping ∨:L×L→{0,1} is weakly
point-surjective, where the join is defined as usual: a\b :=a∨∼b [3]. Now, for any proposition
p :L→{0,1}, there is a negation x :1→{0,1} which is defined as the smallest element whose join
with p gives 1. Denote it as ∼p. Then, we observe that for any other proposition y :L→{0,1}, we
have y\p=g(x,y) which gives y\p=y∨∼p. The function g here is from A×A to Y , so it can easily
be re-written as a mapping from A to Y A. Therefore, g is a weakly point-surjective morphism. Now,
Theorem 3.3 applies. Thus, taken as a CCC, co-Heyting algebras admits fixed points on {0,1}.

By Theorem 3.4, we know that unary operators admit fixed points. Take the unary operator ∼ as
we defined above on the set {0,1} (which is the set Y in the statement of the theorem). It is now
possible to define the boundary ∂ of a formula p as follows: ∂(p)=p∧∼p. As ∼p :=1\p, and by
De Morgan’s Laws, we observe that for all predicates p, ∂(p) is satisfied, producing 1 due to the
following reasoning.

∂(p)=p∧∼p

=1\((1\p)\(1\p))

=1\1

=1

So, by Theorem 3.4, for all predicates p, we have a unary operator ∼ with a fixed point that
satisfies the contradictory statement p∧∼p. Take p as the BK statement to conclude the proof.

Now, we show that a similar approach works for NWF sets. In our earlier discussion, we presented
some counter-models for the classical BK sentence. However, we have not concluded that NWF
models are complete. We need Lawvere’s Lemma to show that NWF belief models cannot be
complete. Consider the category AFA of hypersets with total maps between them.2 Category AFA
admits a final object 1={∅}. Moreover, it also admits exponentiation and products in the usual sense,
making it a CCC. Thus, Lawvere’s Lemma applies.

COROLLARY 3.8
There exists an impossible BK sentence in non-well-founded interactive belief structures.

PROOF. The argument is very similar to the classical case, so we present a sketch of the proof. As
we argued earlier, with the classical negation and a CCC, Lawvere’s Theorem shows the existence
of fixed points. The above argument shows that AFA is a CCC, thus Theorem 3.3 applies. Together
with Theorem 3.4 and with the fact that the negation remains classical in AFA, we conclude that an
impossible BK sentence exists in NWF interactive belief structures by taking the unary operator as
the classical Boolean negation, similar to the argumentation above.

2Thanks to Florian Lengyel for pointing this out.
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The Brandenburger–Keisler paradox 13

The above corollary translates to the fact that in NWF models with hypersets, the BK sentence
still exists as a fixed point. As we already argued, the holes in NWF models are not the same as
the ones in classical belief models. This is not surprising as Russell’s paradox is not solved with
hypersets.

3.2 Topological approach

In the previous section, we observed algebraically that it is possible to have a contradictory BK
sentence satisfiable in some inconsistency-friendly systems. Now, by using topological models, we
construct the belief models that were shown to be possible by the algebraic methods. In our con-
struction, we will make use of relational representation of belief models which in turn produce belief
and assumption modalities. We will then interpret those modalities over paraconsistent topological
models. This result is important as it constructs a topological belief model with a satisfiable BK
sentence.

Topological structures play an essential role in various paraconsistent logics and algebraic struc-
tures. In an early paper, Lawvere pointed out the role of boundary operator in co-Heyting algebras
[19]. In a similar fashion, boundaries play a central role to give topological semantics for paracon-
sistent logics [5, 12, 25]. In the original BK paper where the paradox is first introduced, the authors
discussed several complete models including topologically complete models where their topological
space is a compact metrizable space satisfying several further conditions [6]. Our approach, how-
ever, does not depend on the topological qualities of the space per se, but rather depends on the
topological semantics we build on it.

In the topological semantics for the classical modal logic, topological interior Int and closure Clo
operators are identified with � and � modalities respectively. Then, the extension [·] of a modal
formula �ϕ is given as follows [�ϕ] := Int([ϕ]). In the classical setting, in general, open or closed
sets are produced by the modal operators. Thus, the extensions of Booleans are not necessarily
topologically open or closed in the classical case. At this stage, we can take one step further, and
stipulate that the extensions of propositional variables to be closed sets. This stipulation works well
with conjunction and disjunction as the finite intersection (and respectively, the union) of closed sets
is closed. However, it is not straightforward for negation as the complement of a closed set is not
necessarily closed, but open. Therefore, we define a special negation, the paraconsistent negation,
∼ as the closure of the complement. Then, we obtain a co-Heyting algebra of closed sets as we have
observed in Example 3.6. In this setting, inconsistent theories are the ones that include the formulas
that are true at the boundaries [5, 25].3

The following is a step by step construction of the BK sentence in a paraconsistent topological
setting. We will call these belief models paraconsistent topological interactive belief models.

For the agents a and b, we take corresponding non-empty type spaces A and B, and define closed
set topologies τA and τB on A and B, respectively. Furthermore, to establish connection between
τA and τB to represent belief interaction among the players, we introduce additional constructions
tA ⊆A×B, and tB ⊆B×A. We call the structure F = (A,B,τA,τB,tA,tB,V ) a paraconsistent topological
interactive belief model with a valuation V . Here, the set A represents the possible epistemic states
of the player a in which he/she holds beliefs about player b, or about b’s beliefs etc., and vice versa
for the set B and the player a, and the topologies represent those beliefs. For instance, for player

3Dually, if we stipulate that the extension of the propositional variables to be open sets, we obtain a model of intuitionistic
logic with intuitionistic negation. Thus, the duality of intuitionistic and paraconsistent logics is rather clear if the topological
semantics is adopted.
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14 The Brandenburger–Keisler paradox

a at the state x∈A, tA returns a closed set in Y ∈τB ⊆℘(B). In this case, we write tA(x,Y ) which
means that at state x, player a believes that the states y in Y ∈τB are possible for the player b, i.e.
tA(x,y) for all y∈Y . Moreover, a state x∈A believes ϕ⊆B if {y : tA(x,y)}⊆ϕ. Furthermore, a state
x∈A assumes ϕ if {y : tA(x,y)}=ϕ. Notice that in this definition, we identify logical formulas with
their extensions.

The modal language which we use has two modalities representing the beliefs of each agent.
Akin to some earlier modal semantics for the paradox, we give a topological semantics for the BK
argument in paraconsistent topological interactive belief models [6, 27]. Let us first give the formal
language which we use. The language for our belief models is given as follows.

ϕ :=
 | p | ∼ϕ | ϕ∧ϕ | �a | �b | �a | �b

Here p is a propositional variable, 
 is the truth constant, ∼ is the paraconsistent topological negation
symbol which we have defined earlier, and �i and �i are the belief and assumption operators for
the player i, respectively.

The constant 
 is true everywhere, and we discussed the semantics of the negation already. Also,
the semantics for the conjunction is as usual. For x∈A, y∈B, the semantics of the modalities is given
as follows with a modal valuation attached to F .

x |=�aϕ iff ∃Y ∈τB with tA(x,Y ) implies ∀y∈Y .y |=ϕ
x |=�aϕ iff ∃Y ∈τB with tA(x,Y ) iff ∀y∈Y .y |=ϕ
y |=�bϕ iff ∃X ∈τA with tB(y,X ) implies ∀x∈X .x |=ϕ
y |=�bϕ iff ∃X ∈τA with tB(y,X ) iff ∀x∈X .x |=ϕ

We define the dual modalities �a and �b as usual with the paraconsistent negation: �iϕ :=∼�i∼ϕ
for i∈{a,b}.

Now, we have sufficient tools to represent the BK sentence in our paraconsistent topological belief
structure with respect to a state x0:

x0 |=�a �bϕ∧�a


Let us analyse this formula in paraconsistent topological belief models. Notice that the second
conjunct guarantees that for the given x0 ∈A, there exists a corresponding set Y ∈τB with tA(x,Y ).
On the other hand, the first conjunct deserves closer attention:

x0 |=�a �bϕ iff ∃Y ∈τB with tA(x0,Y ) implies ∀y∈Y . y |=�bϕ

iff ∃Y ∈τB with tA(x0,Y ) implies
[∀y∈Y ,∃X ∈τA with tB(y,X ) iff ∀x∈X . x |=ϕ]

Based on the above observation, let us show that x0 |=�a �bϕ∧�a
 can be satisfied for an
inconsistent ϕ. For simplicity, let ϕ be p∧∼p for a propositional variable p. Denote the extension
of ϕ with X0, so |p|=X0. Pick x0 ∈∂X0 where ∂(·) operator denotes the boundary of a set ∂(·)=
Clo(·)−Int(·). By the assumptions of our framework, X0 is closed. Moreover, by simple topology
∂X0 is closed as well. By the second conjunct of the formula in question (i.e. �a
), we know that
some Y ∈τB exists such that tA(x0,Y ). Now, for all y in Y , we make an additional supposition and
associate y with ∂X0 giving tB(y,∂X0). We know that for all x∈∂X0, we have x |=p as ∂X0 ⊆X0.
Moreover, for all x∈∂X0, x |=∼p. The reason for that is the following. By definition, |∼p|=Clo(X0)
where X0 is the set theoretical complement of X0. Thus, ∂(X0)⊆Clo(X0), which gives ∂(X0)⊆|∼p|.
Thus, we conclude that x0 |=�a �b (p∧∼p)∧�a
 for some carefully selected x0.
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The Brandenburger–Keisler paradox 15

In this construction, we have several suppositions. First, we pick the actual state from the boundary
of the extension of some proposition (ground or modal). Secondly, we associate the epistemic
accessibility of the second player to the same boundary set. Namely, a’s beliefs about b includes
his/her current state.

Now, the BK paradox appears when one substitutes ϕ with the following diagonal formula (whose
extension is a closed set by definition of the closed set topology), hence breaking the aforementioned
circularity:

D(x)=∀y.[tA(x,y)→ ∼tB(y,x)]

The set D(x), as before, can be represented with a special propositional symbol D, as in Section 1.2.
In this case, the formula D will be satisfied at the state x by the set D(x). The BK impossibility
theorem asserts that, under the seriality condition, there is no such x0 satisfying the following
formula x0 |=�a �b D.

x0 |=�a �b D iff ∃Y ∈τB with tA(x0,Y ) implies
[∀y∈Y ,∃X ∈τA with tB(y,X ) iff
∀x∈X . x |=∀y′.(tA(x,y′)→ ∼tB(y′,x))]

Motivated by our earlier discussion, let us analyse the logical statement in question. Let X0

satisfy the statement tA(x,y′) for all y′ ∈Y and x∈X0 for some Y . Then, ∂X0 ⊆X0 will satisfy the
same formula. Similarly, let ∼X0 satisfy ∼tB(y′,x) for all y′ ∈Y and x∈X0. Then, by the similar
argument, ∂(∼X0) satisfy the same formula. Since ∂(X0)=∂(∼X0), we observe that any x0 ∈∂X0

satisfy tA(x,y′) and ∼tB(y′,x) with the aforementioned quantification. Thus, such an x0 satisfies
�a �b D(x). Therefore, the states at the boundary of some closed set satisfy the BK sentence in
paraconsistent topological belief structures. Thus, this is a counter-model for the BK sentence in the
paraconsistent topological belief models.

THEOREM 3.9
The BK sentence is satisfiable in some paraconsistent topological belief models.

PROOF. See the above discussion for the proof which gives a model that satisfies the BK sentence.
The argument is very similar to the algebraic proof that shows the existence of a satisfiable BK
sentence in co-Heyting algebras.

Let ϕ denote the BK sentence. Then, �a �bϕ∧�a
 denotes the BK sentence. Let the extension
of ϕ be X0 where X0 satisfies the statement tA(x,y′) for all y′ ∈Y and x∈X0 for some Y . Pick an
arbitrary x0 ∈∂X0. Then, as we already have observed, x0 |=�a �bϕ∧�a
.

This shows the existence of a state x0 and a model which satisfies the BK sentence.

3.3 Product topologies

In the previous section, we introduced tA and tB to represent the belief interaction between the players.
However, topological models provide us with a variety of tools to combine topological spaces to
model various interactions between modalities and agents/players [10].

In this section, we make use of product topologies to represent belief interaction among the players.
The novelty of this approach is not only to economize on the notation, but also to present a more
natural way to represent the belief interaction. For our purposes here, we only consider two-player
games as our results can easily be generalized to n-player. Here, we resort to a variety of formalisms
presented in some recent works [35, 36].

 by guest on M
arch 30, 2015

http://jigpal.oxfordjournals.org/
D

ow
nloaded from

 

http://jigpal.oxfordjournals.org/


[10:00 16/3/2015 jzv001.tex] Paper Size: a4 paper Job: JIGPAL Page: 16 1–20
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DEFINITION 3.10
Let a,b be two players with corresponding type space A and B. Let τA and τB be the (paraconsistent)
closed-set topologies of respective type spaces. The product topological paraconsistent interactive
belief model for two agents is given as (A×B,τA ×τB,V ) where V is the valuation function.

In this framework, we assume that the topologies are full on their sets—namely
⋃
τA =A, and

likewise for B. In other words, we do not want any non-expressibility results just because the given
topologies do not cover such states. If the topologies are not full, we can reduce the given space to
a subset of it on which the topologies are full without losing any epistemic expressibility.4

In this framework, if player a believes proposition P⊆B at state x∈A, we stipulate that there is
a closed set X ∈τA such that x∈X and a closed set Y ∈τB with Y ⊆P, all implying X ×Y ∈τA ×τB.
Player a assumes P if Y =P, and likewise for player b. Similar to the previous section, we make
use of paraconsistent topological structures with closed sets and paraconsistent negation.

Here, we consider the same syntax of the formulas, and for x∈A and y∈B, we give the semantics
of the modalities as follows as the semantics of the Booleans are identical to the paraconsistent
topological belief models which we discussed earlier.

(x,y) |=�aϕ iff ∃({x},Y )∈τA ×τB implies ∀(x,y)∈ ({x},Y ).(x,y) |=ϕ
(x,y) |=�aϕ iff ∃({x},Y )∈τA ×τB iff ∀(x,y)∈ ({x},Y ).(x,y) |=ϕ
(x,y) |=�bϕ iff ∃(X ,{y})∈τA ×τB implies ∀(x,y)∈ (X ,{y}).(x,y) |=ϕ
(x,y) |=�bϕ iff ∃(X ,{y})∈τA ×τB iff ∀(x,y)∈ (X ,{y}).(x,y) |=ϕ

Notice that, now, product topological paraconsistent interactive belief models do not have the
functions tA or tB unlike the models we discussed in the previous section as the topological product
operator × is defined to represent the interaction between the agents. This is how we economize in
the notation.

Given a set S ⊆A×B, we say that S is horizontally closed if for any (x,y)∈S, there exists a closed
set X with x∈X ∈τA and X ×{y}⊆S. Similarly, S is vertically closed if for any (x,y)∈S, there exists
a closed set Y with y∈Y ∈τB, and {x}×Y ⊆S [35, 36]. In this framework, player a at x∈A is said to
believe a set Y ⊆B if {x}×Y is vertically closed. We can also define assumption-complete structures
in product topologies.

DEFINITION 3.11
For a given language L for our belief model, let La and Lb be the families of all subsets of A and B,
respectively. Then, we observe that by assumption-completeness, we require every non-empty set
Y ∈Lb is assumed by some x∈A, and similarly, every non-empty set X ∈La is assumed by some
y∈B.

It is now possible to characterize assumption-complete paraconsistent topological belief models.
Given type spaces A and B, we construct the closed-set topologies on respective type spaces τA and
τB where each subset of A and B are in τA and τB, respectively. Therefore, it is easy to see that A×B
is vertically and horizontally closed for any S ⊆A×B. For any S ⊆A×B, take an arbitrary (x,y)
from S. Since, the singleton {x} is in τA by construction and is closed, we observe that for all y∈B,
we have {x}×{y}⊆S as (x,y) was picked from S. Therefore, we conclude that S is horizontally
closed. By the same reasoning, S is vertically closed, too.

Moreover, under these conditions, product topological belief models are assumption-complete.
Let La and Lb be the families of all subsets of A and B, respectively. Take them as τA and τB,

4This observation is a basic modal logical fact which suggests that adding states to a model which are not accessible from
any other state by the modal operators does not change the expressive strength of the model, and two such models effectively
satisfy the same formulas.
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respectively. Then, without loss of generality, take an arbitrary Y ∈τB. We need to show that Y is
assumed by some x∈A. However, by construction of the topologies τA and τB, for any Y ⊆B and
any X ⊆A, we have X ×Y ∈τA ×τB. Thus, Y is assumed by all x∈A (as {x}∈τA). The proof used a
set from τB. The same argumentation also works for a set X from τA.

We can summarize these observations in the following proposition.

PROPOSITION 3.12
Given type spaces A and B, construct the closed set topologies on respective type spaces τA and τB

where each subset of A and B are in τA and τB, respectively. Then,

• A×B is vertically and horizontally closed for any S ⊆A×B.
• The structure (A×B,τA ×τB,V ) is assumption-complete.

We can relax some of these conditions. We define weak assumption-completeness for a topological
belief structure if every set S ∈A×B is both horizontally and vertically closed. In weak-assumption-
complete models, we lack the topological liberty that came with the topological spaces that contain
each and every subset of the given type space. Weak-assumption completeness can be considered a
weakening of this topological assumption. Then, by definition, we observe the following.

THEOREM 3.13
Let M = (A×B,τA ×τB,V ) be a product topological paraconsistent interactive belief model. If M is
horizontally and vertically closed, then it is weak assumption-complete.

PROOF. The proof follows from the definitions, so we will briefly sketch it here. Let M = (A×B,
τA ×τB,V ) be a product topological paraconsistent interactive belief model which is both horizontally
and vertically closed. To obtain a contradiction, assume that M is not weak assumption-complete.
Thus, without loss of generality assume that M is horizontally closed but not vertically closed. This
creates a contradiction as M was assumed to be both horizontally and vertically closed.

4 Conclusion and future work

In this article, we implicitly argued that the choice of traditional and classical logical tools to
express a self-referential paradox in games is not well-justified. We achieved this by presenting two
non-classical frameworks to formalize impossible beliefs in games. Non-well-founded sets, among
many other things, enabled us to use a larger collection of models to represent self-referentiality.
Paraconsistent logic, on the other hand, gave us additional tools to construct inconsistency-friendly
models. This directly relates to the possibility of expressing inconsistent knowledge in epistemic
games. With the help of such notions, it is possible that we can express (at least descriptively)
various inconsistent game theoretical situations including the mistakes committed by rational agents,
inconsistent signals and moves. Such long-term and far-reaching goals of our research programme
cannot be achieved by the standard tools of epistemic game theory and classical modal logic. Also,
what we did not discuss at all in the current work are the implications of the non-classical models
and paraconsistent logics on the traditional notion of game theoretical rationality. For instance, it
is worthwhile to pursue what NWF game models entail in terms of the rationality of the players or
how the traditional utilitarian notion of rationality can be defined against a paraconsistent logical
background theory.

The methodology which we presented in this work can also be applied to semantical games
including discursive and dialogical games [17, 20, 31]. Conceptually, this raises the idea of discussing
epistemics in semantical games. Therefore, a further research direction is to combine the formalisms
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of this work with that of dialogical logic to analyse various issues and paradoxes in epistemic game
theory.

Even if the current paper discusses only a self-referential game theoretical paradox, some non-
self-referential paradoxes interest philosophers and logicians. Yablo’s paradox is a novel approach to
paradoxes and dialetheism [37]. It seems appealing and perhaps challenging to search for epistemic
game theoretical situations which can be expressed by a two-person formulation of Yablo’s paradox.
Thus, non-self-referential paradoxes may suggest even a broader approach to epistemic games and
paraconsistency.

Finally, note that, from a logical perspective, paraconsistency has its dual intuitionistic form
where the belief sets of the players may be incomplete or paracomplete. Hintikka and Sandu’s
Independence-Friendly logic (IF logic) can be an excellent tool to analyse the dualities of the BK
paradox [15, 22].
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[22] A. L. Mann, G. Sandu and M. Sevenster. Independence-Friendly Logic. Cambridge University
Press, 2011.

[23] T. Mariotti, M. Meier and M. Piccione. Hierarchies of beliefs for compact possibility models.
Journal of Mathematical Economics, 41, 303–324, 2005.

[24] D. Mirimanoff. Les antimonies de russell et de burali-forti et le probleme fondamental de la
theorie des ensembles. L’Enseignement Mathématique, 19, 37–52, 1917.
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