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Abstract
History based models suggest a process-based approach to epistemic and temporal
reasoning. In this work, we introduce preferences to history based models. Motivated
by game theoretical observations, we discuss how preferences can dynamically be
updated in history based models. Following, we consider arrow update logic and
event calculus, and give history based models for these logics. This allows us to relate
dynamic logics of history based models to a broader framework.

Keywords History based models · Preference logic · Dynamic logic · Arrow update
logic · Product update models

1 Motivation

Formalizing dyadic preferences using Kripke models suggests a one-shot comparison
of agents’ choices. In this setting, there is no past and the choices are local. When it
comes to epistemic and game theoretical situations which require a comparison based
on agents’ previous actions, such models fall short.

There can be thought of many cases where agents’ preferences today depend on
their behavior in the past. Simply put, most people prefer chocolate to tofu. Yet, if in
the immediate past a person has had a lot of chocolate, his preference for chocolate
today may differ. Moreover, if a person develops an intolerance for dairy, then his
preference for chocolate can change. A new piece of information may cause agents to
update their preferences. Such a situation requires a logic which can describe actions,
events, preferences and their updates.

Well-known Kripke structures tend to formalize preferences using state-based dis-
crete models (Hanson 2001; van Benthem and Liu 2007; van Benthem 2014). Most
certainly, this approach has some advantages: they are easy to work with and portable
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to various other modal attitudes. Yet, when it comes to describing preferences that
have some dependency on agents’ behavior in the past, these models may fall short.
For this task, a process based model with the formal strength of expressing temporal
and epistemic attitudes is needed (Sack 2008; Renne et al. 2016). In this paper, take
a step towards this direction and offer an alternative formalism to describe subjective
preferences based on agents’ behavior in the past, or their histories. As such, our
approach suggests an evolutionary perspective on preferences, immediately allowing
the possibility of updating preferences dynamically, which we describe later on.

This is where game theoretical motivations become relevant to our discussion for
two main reasons. First, the past behavior or experience of agents affects their future
behavior, hence next moves, and consequently becomes an essential part of strate-
gizing. Therefore, having a model with the syntactic strength to express histories can
be useful for game theoretical applications. Second, preferences (hence strategies)
may depend on agents’ histories. What an agent prefers today may be traced back to
what he preferred yesterday. Such situations can be described by histories which can
express preferences and their revisions. In order to do justice to the subject, in this
work we focus only on the formal aspects of the logics in question and leave the game
theoretical applications to future work.

Logical structures which rely on histories are not obscure, and luckily, we do not
need to look far to find examples. History based structures, proposed by Parikh and
Ramanujam (2003), suggest a formal framework that lies between process models and
temporal epistemic logics. Epistemic and temporal reasoning in history based mod-
els depend on sequences of events, called histories. These models have been used to
model epistemicmessages and communicationbetween agents using adynamic logical
framework, and deontic obligations (Parikh andRamanujam 2003; Pacuit 2007; Pacuit
et al. 2006). Furthermore, they are technically similar to interpreted systems which
were suggested to formalize temporal and epistemic aspects of program runs (Halpern
et al. 2004; Pacuit 2007). Nevertheless, preferences or any game theoretical formalism
have not yet been adequately introduced to history based structures. This is what we
achieve in this work.

This work positions itself within the domain of logic of games and process models.
The literature abounds focusing on logics for games and preferences on one hand,
and logics for processes on the other. van Benthem (2014) presented a modern modal
logical approach to the subject. A survey of preference logics is given in Hanson
(2001). Recently, Osherson andWeinstein (2012) proposed a logic of preference based
on the reasons to form preferences. Within the program of dynamic logic, preference
updates have been studied rigorously (vanBenthem and Liu 2007). Nevertheless, these
frameworks use Kripke models and suffer from the issues we described earlier.

On theother hand, processmodels usinghistories or runsweredeveloped to describe
logics for programs and their epistemologies (Halpern et al. 2004; Fagin et al. 1995,
1991, 1999). Various models for distributed computing have been used in game the-
oretical formalism and we refer the reader to a brief survey for an overview (Halpern
2008). To the best of our knowledge, such models have not been extended to express
preferences over program runs.

In this work, we extend history based structures by introducing preference
modalities—first a static one followed by a dynamic one. By achieving this, we relate
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the subject to the domains of preference logic and distributed multi-agent systems.
After noting the fundamental properties of the preference modality, we proceed to
describe various strategies to dynamically update preferences. Following, we focus
on some immediate applications of our models and conclude by pointing out the
potential use of this framework in various game theoretical situations.

The technical work we present has some overreaching game theoretical implica-
tions. In games, strategies are conceived before the play (Hodges 2013). Any revision
or update in strategies is essentially considered as part of the strategies. Similarly,
considering the epistemics of games, “the entire stream of beliefs of a player” was
summarized in a single entity, which Harsanyi called the player’s type (Brandenburger
2014; Harsanyi 1967). Therefore, any potential (epistemic or preference) update is
thought to be contained in the type, which renders dynamic epistemology rather dis-
pensable for game theory. Preferences are also considered in a similar fashion in
traditional game theory. Any change or update in agents’ subjective preferences are
thought to be already included in the initial preferences of the agents. The current paper,
however, offers various descriptions to update preferences and consequently strategies.
Such a move is helpful to understand the ontology of strategies and whether strategies
should be defined statically or dynamically (Başkent 2011). Therefore, our formalism
allows a nuanced examination of various game theoretical and logical issues, and sets
a formal basis for the analysis of dynamic preferences in games.

This paper is organized as follows. First, we introduce the fundamentals of history
based models and observe few modally undefinable properties. Following, we intro-
duce a preferencemodality to history basedmodels and observe how it commutes with
other modal attitudes in our language. Next, we motivate why and how preferences
can be updated, especially for game theoretical reasons. This allows us to construct a
logical structure with preference updates. We show the completeness and decidability
of our system. Consequently, we observe how this new logic relate to certain other
dynamic logics in the literature. This allows us to further explore the formal qualities
of our logic. Finally, we conclude with some remarks on how our work positions itself
in the literature.

2 Basic Logical Structure

Different from Kripke models, history based models are constructed by using a given
set of events for (preferably, multiple) agents. Events can be seen as actions or moves
(in a game theoretical context)which take place over time and potentially affect agents’
knowledge. When a history is considered as a sequence of events, it is important to
tell apart which events were carried out by which agents, and which agents can see
which events and possess what knowledge.

History based structures are constructed by using a set of events E and a set of
agents A. For each agent i ∈ A, Ei ⊆ E is the set of events which can be performed or
“seen” by agent i . A string h is a history over a set of events E, if it is a finite sequence
of events in E. For a set of events E, E∗ denotes the set of finite strings over E. Similarly,
Eω denotes the set of infinite strings over E.
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By lowercase letters h, h′, . . ., we denote finite histories from E∗, and by uppercase
letters H , H ′, . . ., we denote those from E∗ ∪ Eω. A history h is local for agent i , if
h ∈ E∗i . If a history H is of at least length l, and m ≤ l, then let H(m) be the mth
element of the sequence. The concatenation of finite history h with (possibly infinite)
history H will be denoted by h H . Similarly, for a history of length greater than k or
infinite, Hk denotes the finite prefix of H of length k. If a history H prefixes history
H ′, we write this as H ≤ H ′. A history H ′ is the sub-history of H if each event in H ′
appears in the same order in H , and it is denoted as H ′ � H . For example, ab ≤ abc
but ac � abc.

For any set of historiesH, the set FinPre(H) denotes the set of finite prefixes of the
histories in H. More precisely, FinPre(H) = {h : h ≤ H , H ∈ H}. A set of histories
H is called a protocol if it is closed under prefixes, i.e. FinPre(H) ⊆ H.

Now we can discuss temporal and epistemic operators in this framework. Given
an agent i and a global history H , the agent i can only access some of H . For two
histories H , H ′, if the agent can access the same parts of H and H ′, then H and H ′
are indistinguishable for i .

Definition 2.1 Let i be an agent, and H be a set of histories. A function λi :
FinPre(H) 	→ E∗i is a locality function for i inH.

There are various additional properties onemaywish to require of locality functions.
An agent i’s local clock is consistent with the global clock if, for all H ∈ H and time
points t, m ∈ N, if t ≤ m, then λi (Ht ) ≤ λi (Hm) (Pacuit 2007). An agent i’s locality
function is embeddable if, for all H ∈ FinPre(H), λi (H) � H , that is, all of the
events in λi (H) occur in H , in the same order (Pacuit 2007). From this point on, we
assume all agents’ local clocks are consistent with the global clock and λi (H) � H
for all agents i . In other words “agents are not wrong on about the events that they
witness” [ibid]. It is important to notice that the above additional conditions which we
imposed on history basedmodels are not obvious inKripkemodels. Therefore, varying
such conditions would permit us to define different temporal concepts of knowledge
and agency. For example, agents’ knowledge which is out-of-sync of the global clock
allows us to trace timed signals, which can be important for various game theoretical
situations.

Definition 2.2 Let i be an agent, and let λi be its locality function. Histories h and
h′ are indistinguishable for agent i , written h ∼i h′, if and only if h and h′ are finite
histories, and λi (h) = λi (h′).

For obvious reasons, ∼i is an equivalence relation. Thus, the epistemic logic of
history based structures is the standard multi-agent epistemic logic S5n .

Given a set of propositional variables P , we define the syntax of history based
structures in the Backus–Naur form as follows.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | ©ϕ | ϕUϕ

where p ∈ P , i ∈ A. The knowledge operator for agent i is denoted by Ki and the
temporal next-time operator is denoted by©. We call U the until operator. We take
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implication→ as an abbreviation in the usual sense. Valuation function V is defined
as V : P 	→ ℘(FinPre(H)).

A tuple M = (E,H,A, E1, . . . , En, λ1, . . . , λn, V ) is a history-based temporal-
epistemic model, or a history-based model for short, where E is a global set of events,
H ⊆ E∗ ∪ Eω is a protocol, A is a set of agents, Ei and λi are agent i’s local event set
and locality function respectively, and V is a valuation function as defined earlier.

Truth in history basedmodels is defined inductively as follows.We define semantics
for infinite histories (Pacuit 2007).1

H , t |�M p iff Ht ∈ V (p),

H , t |�M ¬ϕ iff H , t �|�M ϕ,

H , t |�M ϕ ∧ ψ iff H , t |�M ϕ and H , t |�M ψ,

H , t |�M ϕ ∨ ψ iff H , t |�M ϕ or H , t |�M ψ,

H , t |�M ©ϕ iff H , t + 1 |�M ϕ,

H , t |�M Kiϕ iff for all H ′ ∈ H, Ht∼i H ′
t implies H ′, t |�M ϕ,

H , t |�M ϕUψ iff there exists k ≥ t such that H , k |�M ψ and ,

for all l, t ≤ l < k implies H , l |�M ϕ.

The dual of the epistemic modality is denoted with Li and defined in the usual way.
The expression M |� ϕ denotes the truth of ϕ in a history basedmodel M , independent
from the current history and time-stamp. When it is clear from the context, we will
omit the subscript M for the model.

The axioms for history basedmodels are given in the following (Parikh andRamanu-
jam 2003; Halpern et al. 2004).

• All tautologies of propositional logic,
• Ki (ϕ → ψ)→ (Kiϕ → Kiψ),
• Kiϕ → ϕ ∧ Ki Kiϕ,
• ¬Kiϕ → Ki¬Kiϕ,
• ©(ϕ → ψ)→ (©ϕ →©ψ),
• ©¬ϕ ↔ ¬© ϕ,
• ϕUψ ↔ ψ ∨ (ϕ ∧©(ϕUψ)).

The rules of inference aremodus ponens, and normalization for all threemodalities:

• � ϕ, ϕ → ψ ∴ � ψ ,
• � ϕ ∴ � Kiϕ,
• � ϕ ∴ � ©ϕ,
• � ϕ → (¬ψ ∧©ϕ) ∴ � ϕ → ¬(ϕUψ).

For the completeness and complexity results of this system we refer the reader
to Fagin et al. (1995), Halpern et al. (2004) and Pacuit (2007). The standard complete-
ness proof for the systems of epistemic and temporal systems proceed by forming
consistent closure sets, very much similar to the procedural completeness proofs of

1 This is important in order to prevent some technical problems such as evaluating the truth of a formula
at time point n, for example, when the finite history h is shorter than n. We are thankful to the anonymous
referee for pointing this out.

123
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modal logic. Such systems are easy to translate to history based models, as observed
by Pacuit, proving their completeness.

History based models combine epistemic and temporal modalities in a complex
way. What properties can or cannot be defined using the syntax of history based
structures is a meaningful question. In order to answer this question, we need to define
bisimulations.

Definition 2.3 For history based models M, M ′, and history–time pairs H , t in M and
H ′, t ′ in M ′, a bisimulation �� between H , t and H ′, t ′ is a tuple �� = (��0, ��1)
where ��0 is a binary relation between the history–time pairs in M and M ′ and ��1 is
a binary relation between the pairs of history–time pairs in M and M ′ such that

Propositional base case

• If H , t ��0 H ′, t ′, then H , t and H ′, t ′ satisfy the same propositional variables,

Temporal forth case

• If H , t ��0 H ′, t ′ and t < u, then there isu′ in M ′ such that t ′ < u′, H , u ��0 H ′, u′
and (H , t), (H , u) ��1 (H ′, t ′), (H ′, u′),

• If (H , t), (H , u) ��1 (H ′, t ′), (H ′, u′) and if there is v′ with t ′ < v′ < u′, then
there exists v such that t < v < u and H , v ��0 H ′, v′,

Temporal back case

• If H , t ��0 H ′, t ′ and t ′ < u′, then there is u in M such that t < u, H , u ��0 H ′, u′
and (H , t), (H , u) ��1 (H ′, t ′), (H ′, u′),

• If (H , t), (H , u) ��1 (H ′, t ′), (H ′, u′) and if there is v with t < v < u, then there
exists v′ such that t ′ < v′ < u′ and H , v ��0 H ′, v′,

Epistemic forth case

• If H , t ��0 H ′, t ′ and Ht∼i Kl , then there is K ′, l ′ in M ′ such that K , l ��0 K ′, l ′
and H ′

t ′∼i K ′
l ′ ,

Epistemic back case

• If H , t ��0 H ′, t ′ and H ′
t ′∼i Kl ′ , then there is K , l in M such that K , l ��0 K ′, l ′

and Ht∼i Kl ,

In the above definition, the interval bisimulations defined for the temporal cases are
needed for the temporal until modality, as the until modality is essentially an interval
process equivalence. Based on this definition, we give the following theorem.

Theorem 2.4 For history based models M, M ′, and history–time pairs H , t in M and
H ′, t ′ in M ′, if H , t �� H ′, t ′, then they satisfy the same formula.

Proof For the standard epistemic case see Blackburn et al. (2001), for the temporal
case see Kurtonina and de Rijke (1997). ��

We now observe that some properties of histories are not (modally) definable.

Proposition 2.5 The length of histories is not modally definable.
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Corollary 2.6 The finiteness of histories is not modally definable.

The proof of the above proposition uses bisimulations and the fact that thesemodels
are not backward-looking. It is possible to construct two bisimilar history–time pairs,
one of length n and the other of length n+k for some k �= 0.An easyway to achieve this
is to prefix a history of length n with strings of length k. In that case, for instance, we
may have bisimilar history–time pairs of abc, 2 �� xxabc, 4 with different length—
provided that the epistemic relation is defined respecting the bisimulation. Henceforth,
if there was a formula defining the length of histories, then this formula must have
been preserved under bisimulations. However, this is not possible as the length of the
history abc is strictly less than that of xxabc.

The above results present a limitation on history based models. For example, the
evolutionary aspects of knowledge acquisition cannot be quantitatively described as
the length of histories are not modally definable. Such issues can be important in
certain game theoretical situations.

3 Preferences in History BasedModels

One of the main contributions of this paper is to introduce subjective preferences
to history based models with game theoretical applications in mind. This will allow
us to describe some basic game theoretical situations using history based models.
Furthermore, we will also suggest various ways to update such subjective preferences.

For an agent i , and possibly infinite histories H , H ′, the expression H �i H ′
denotes that “the agent i (weakly) prefers H ′ to H ′′. The preference relation will be
taken as a pre-order satisfying reflexivity and transitivity (not necessarily total) (van
Benthem 2014; Hanson 2001). If H �i H ′ and H ′ �i H , we denote it by H ≈i H ′.
The strong preference relation is denoted by ≺i for agent i , and defined as expected:
H ≺i H ′ iff H �i H ′ and H �= H ′.

In order to describe preferences in a modal language, we augment the syntax of the
logic of history based structures with a modal operator ♦i . In this context ♦iϕ reads
that there is a history which is at least as good as the current one and satisfies ϕ for
agent i . The syntax of history based preferences L is given as follows.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | ©ϕ | ϕUϕ | ♦iϕ

where p ∈ P , i ∈ A. We take implication→ as an abbreviation in the usual sense.
The semantics for the preference modality is given as follows.

H , t |� ♦iϕ iff ∃H ′. H �i H ′ and H ′, t |� ϕ

The dual of the preference modality is denoted by�i and defined in the usual sense.
Formally, history based preference model is a tuple

M = (E,H,A, E1, . . . , En, λ1, . . . , λn,�1, . . . ,�n, V )

where �i is the preference comparison order for agent i and the rest is as before.
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As we underlined, this formalism compares histories as opposed to propositions.
However, it is possible to express preferences over propositions by referring to the
histories which satisfy them. The formula M |� ϕ → ♦iψ denotes that the agent i
weakly prefers ψ to ϕ in model M . In other words, each ϕ has an alternative history
which is at least as preferable as the current one and satisfies ψ , thus ψ is weakly
preferred to ϕ.

We take the preference modality as S4 with the expected rule of inference—that
is necessitation. For the completeness of our treatment, the axiomatization of history
based preference logic is given as follows.

• All tautologies of propositional logic,
• Ki (ϕ → ψ)→ (Kiϕ → Kiψ),
• Kiϕ → ϕ ∧ Ki Kiϕ,
• ¬Kiϕ → Ki¬Kiϕ,
• �i (ϕ → ψ)→ (�iϕ → �iψ),
• �iϕ → ϕ,
• �iϕ → �i�iϕ,
• ©(ϕ → ψ)→ (©ϕ →©ψ),
• ©¬ϕ ↔ ¬© ϕ,
• ϕUψ ↔ ψ ∨ (ϕ ∧©(ϕUψ)).

The rules of inference are modus ponens, and necessitation for all three modalities:

• � ϕ, ϕ → ψ ∴ � ψ ,
• � ϕ ∴ � Kiϕ,
• � ϕ ∴ � �iϕ

• � ϕ ∴ � ©ϕ,
• � ϕ → (¬ψ ∧©ϕ) ∴ � ϕ → ¬(ϕUψ).

We call the logic of history based structures with preferences HBPL after history
based preference logic.

3.1 Expressive Power

In what follows, we introduce additional axioms to express various epistemic and
strategic situations in HBPL. They give a direct illustration for HBPL’s potential use in
game theoretical formalism.

Connectedness of preferences The connectedness property for the preference rela-
tion suggests that any two histories are comparable. The corresponding relational
formula is given as ∀H , H ′.H �i H ′ ∨ H ′ �i H . The corresponding modal axiom is
as follows: �i (�i p → q) ∨ �i (�i q → p). This renders the frame with preference
modality as a total pre-order. A total pre-order of preferences over histories equips
players with the game theoretical strength to compare each and every history. Philo-
sophically, this allows us to discuss counterfactual reasoning in games, which falls
outside the scope of the current paper.
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Epistemic perfect recall Agents with perfect recall retain knowledge once they
acquire it. The standard axiom for this property is given as follows: Ki©ϕ →©Kiϕ.
It is rather easy to show that this axiom is valid in HBPL. Given an arbitrary history H
and a time-stamp t , we start with assuming H , t |� Ki©ϕ. Our aim is to show that
©Kiϕ holds at H , t . Now, by definition, ∀H ′.(H∼i H ′ → H ′, t |� ©ϕ). Unfolding
the temporal modality gives ∀H ′.(H∼i H ′ → H ′, t + 1 |� ϕ). Now, we can fold
back, but this time starting with the epistemic modality. By definition, we first obtain
H , t + 1 |� Kiϕ, which produces H , t |� ©Kiϕ. Thus, Ki©ϕ →©Kiϕ is valid in
HBPL.2

The satisfaction of epistemic perfect recall perhaps justifies the reason why we call
sequences of events “histories” (as opposed to runs or traces). From a philosophical
angle, it suggests a strong epistemic restriction on the potential class of games towhich
history based models might be applicable.

Preferential perfectness By preferential perfectness, we mean that agents do not
change their preferences in time. Consider the scheme �i©ϕ → ©�iϕ. It is also
easy to show that this scheme is valid in HBPL. Similar to Perfect Recall, Preferential
Perfectness suggests that once acquired preferences do not change. This suggests that,
if necessary, they can only be revised at the level of the model. We will use this
observation to motivate a dynamic approach to preference change.

Epistemic rationality By a slight abuse of terminologywe call the formula♦i Kiϕ →
Ki♦iϕ theChurch–Rosser Property. TheHBPL frameswhich satisfy theProperty enjoy
the following relational condition:

∀H ′H ′′.(H �i H ′ ∧ H ∼i H ′′) → ∃J .(H ′ ∼i J ∧ H ′′ �i J )

In the following we show that the above relational (frame) condition corresponds to
the formula ♦i Kiϕ → Ki♦iϕ in history-based models.

Let the frame condition satisfied in history-based frames. For an arbitrary history–
time pair H , t , we assume H , t |� ♦i Kiϕ. We will show that H , t |� Ki♦iϕ by
reductio. First, by the assumption, there exists a history H ′ such that H �i H ′ with
H ′, t |� Kiϕ. Then, by definition, for all J with H ′ ∼i J , we have J , t |� ϕ.
Now, in order to obtain a contradiction, assume H , t |� ¬Ki♦iϕ. By definition,
this is equivalent to H , t |� Li�i¬ϕ. Then, there exists H ′′ such that H ∼i H ′′
with H ′′, t |� �i¬ϕ. Now, we have H �i H ′ and H ∼i H ′′. By the Church–
Rosser property, there exists W with H ′ ∼i W and H ′′ � W . Now, for all J ′ with
H ′′ �i J , we have J ′, t |� ¬ϕ. This is a universal statement for all J ′′ ranging over
H ′′ �i J . Thus, it applies to W . Thus, W , t |� ¬ϕ. Similarly, we had for all J with
H ′ ∼i J that J , t |� ϕ. This is a universal statement as well which can be instantiated
with W . Thus, W , t |� ϕ. This is a contradiction. Thus, H , t |� Ki♦iϕ, yielding
H , t |� ♦i Kiϕ → Ki♦iϕ.

2 However, the axiom Ki©ϕ → ©Ki ϕ is not sufficient to establish the completeness of frames with
respect to perfect recall (van der Meyden and Wong 2003; van der Meyden 1994). The additional axiom
required for this task is a complicated one:
Ki ϕ1 ∧©(Ki ϕ2 ∧ ¬Ki ϕ3)→ ¬Ki¬((Ki ϕ1)U ((Ki ϕ2)U¬ϕ3)).
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The converse direction is similar. Assume, H , t |� ♦i Kiϕ → Ki♦iϕ for arbitrary
H , t and ϕ. Now, let H �i H ′ and H ∼i H ′′. We will establish by reductio that there
exists a history J with the desired property. So let us assume that there is no J with
H ′ ∼i J and H ′′ �i J . The Church–Rosser formula is a frame-property, thus it is
satisfied in every valuation. Let us pick a simple one. For this, we start with assuming
that ϕ is a propositional variable and H , t |� ♦i Kiϕ. Thus, for some H �i H ′, we
have H ′, t |� Kiϕ. Thus, for all X with H ′ ∼i X , we have X , t |� ϕ. Based on
this observation, we define a minimal valuation V for the propositional variable ϕ as
follows: V (ϕ) : {H , t : H ′ ∼i H}. Now, since we had H ∼i H ′′ and H , t |� Ki♦iϕ,
we observe that H ′′, t |� ♦iϕ. Thus, we need a history J ′ with H ′′ �i J ′ and,
by the definition of the minimal valuation for ϕ, H ′ ∼i J ′. However, by our initial
assumption, there is no such J ′. Thus, H ′′, t |� ♦iϕ cannot be true. Contradiction
shows that there is such a history J with H ′ ∼i J and H ′′ �i J .

The Church–Rosser Property suggests that if, at a better history, an agent knows
ϕ, then the agent knows that at a better history ϕ is satisfied. This has some potential
applications in games. For example, elimination of strictly dominated strategies is a
solution concept in game theory which works irrespective of the order of elimination.
Having Church–Rosser property satisfied in epistemic game models suggests that the
order of eliminating the strictly dominated strategies does not matter (Leyton-Brown
and Shoham 2008). This is how history models directly relate to game theoretical
reasoning.

It is also easy to see the validities of various some other modal formulas, including
�i Ki©ϕ →©�i Kiϕ or Ki�i©ϕ →©Ki�iϕ. Similarly, various commutativity
properties of the modalities, such as Ki K jϕ ↔ K j Kiϕ, can be studied. We leave
them to the reader.

For the completeness and decidability of HPBL, we refer the reader to Halpern
et al. (2004) and Halpern and Vardi (1989) where the completeness of epistemic-
temporal logics with runs are given by using maximal consistent sets in the usual
sense within a quite involved framework. These results carry over directly to HBPL for
two reasons. First, for the preference modality, we have not introduced any interaction
axiom between the preference modality and any other modality. Second, epistemic
modality is known to be S5 and stronger than the preference modality which is taken
as S4. Then, HBPL can be seen as a fusion of an (epistemically) S5 history based
temporal-epistemic logic and an S4 preference logic (Gabbay et al. 2003). Based
on these observations and Halpern et al. (2004) and Halpern and Vardi (1989), the
completeness and decidability of HBPL follow.

Theorem 3.1 HBPL is sound and complete with respect to the axiomatization given.

Theorem 3.2 HBPL is decidable.

4 Dynamic Preference Update on Histories

There can be suggested various reasons as to why players may need to update their
preferences in games. They may receive a new piece of information, improve their
skills, strategize, or simply make mistakes or cheat. Particularly, in some incomplete

123



A History Based Logic for Dynamic Preference Updates

A

B

(3, 2)

c

(0, 0)

d

c

B

(0, 0)

c

(2, 3)

d

d

cc

dc dd

cd

Fig. 1 Battle of the Sexes in extensive normal form (left) and its epistemic indistinguishability relation.
The solid line defines the knowledge set of Player A whereas the dashed line defines that of B

information games rational players may be forced to revise their preferences when a
new piece of information is introduced. Let us now see a game theoretical example to
illustrate our perspective.

We start by considering a variation of Battle of the Sexes given in Fig. 1. In this
coordination game, two players A and B want to attend the same event together. They
have two choices: going to a cooking class (c) or dancing (d). Player A prefers the
cooking class, whereas Player B prefers dancing. But, both prefer attending the same
activity rather than different ones. A game theoretical conundrum occurs, if we are in
the situation that A and B made plans to meet up to attend an event together, but they
cannot remember where. If they cannot communicate, what should they do?

We assume that each agent has a preference over her preferred activity and they are
committed to make the best move based on their preferences. Player A wants to go to
the cooking class, B wants to go dancing. Since there is no communication, they do
not know each other’s move. But, they would cooperate if they learned (in a one-way
communication) how the other would act.

We model the game using preferences. As players have symmetric preferences, let
us focus only on Player A’s (weak) preferences for simplicity. For A, we have

cd �A dc �A dd �A cc

and
cd ∼A cc dd ∼A dc.

As we mentioned, A’s incentive is to go to cooking class. But, the game is an
imperfect information game. Let us assume that A learns that B is on her way to
dancing, after a common friend tells her. This eliminates A’s preference of going to
cooking class. Then, A’s highest preference becomes going dancing.

When A learns about B’s d move, she revises her preferences to leave only

cd �A dd.

In this case, her best move becomes d. She no longer prefers going to cooking class
over dancing, consequently the preference relation between them is eliminated. Fur-
thermore, for A the epistemic distinguishabilities between cd and cc, and dd and dc
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are removed, as A now knows the current state of the game. The alternative histories,
cc and dc, however, are kept in the model because they may be needed to express
various other epistemic situations. In our case, since B may not know that A knows
about B’s move, we need to keep cc and dc in the model for a complete epistemic
description of the situation.

In our model, preference elimination is controlled by formulas in the language.
For example, after learning about B’s move, the preference relation dd �A cc is
eliminated. Because at history dd (at the appropriate time-point), it is true that B
makes a d move, whereas at cc (again, at the appropriate time-point), it is not the
case that B makes a d move. Hence, the fact that “B makes a d move” controls the
preference update.

We can generalize from this example. First, we choose to eliminate the preference
relations that are made redundant, but keep those histories which were used to define
said preferences. One reason is that the update may not be common knowledge and
some agents may still consider those histories epistemically plausible. To the best of
our knowledge, such preference models have always used Kripkean models to give
an account of dynamic preference updates. In this work, we suggest a history-based
model for preference updates to take advantage of its applicability to game theoretical
situations. Another advantage of using HBPL for game theoretical reasoning is that it
admits native tools to express turns and move orders, denoted by the temporal time-
stamp. In this work, we will not heavily focus on the temporal aspects of the games,
but rather discuss the preference dynamics.

Before describing the formal details of dynamic preference updates in history
based models, it is important to note that the syntax of HBPL is strong enough to
express saddle points and game equilibria in certain cases. In the Battle of Sexes
example, for instance, the game admits two Nash equilibria: cc and dd (Osborne and
Rubinstein 1994). These histories satisfy certain modal logical properties: they are
strictly preferred and there is no strictly better move for the player that his opponent
cannot distinguish epistemically. Therefore, we have cc, 2 |� ¬〈≺i ∩ ∼−i 〉 and
dd, 2 |� ¬〈≺i ∩ ∼−i 〉 , where≺i is the strict preference subrelation of�i ,−i is the
opponent of i , and 〈R〉 is the auxiliary modality defined using the relation R. Such a
characterization is straightforward for simple games like Battle of Sexes or Prisoner’s
Dilemma where information sets are easy to handle and pure strategy equilibria exist.
We leave such discussions for future work.

Now, we formally introduce preference updates to history based models.
Following the standard methodology, the preference update will be carried out by

a distinguishing formula ϕ. The formula ϕ is a “distinguishing formula” for H , t and
H ′, t , if H , t |� ϕ but H ′, t |� ¬ϕ. For a given H �i H ′, the purpose of a preference
update by a distinguishing formula ϕ is to eliminate H �i H ′ from the preference
relation so that H �i H ′ is obtained. We denote the updated preference relation for
agent i by �∗i . Syntactically, we denote the preference update by ϕ with [ϕ!]. In the
above example, “B makes a d move” acts as the distinguishing formula.

Given a HBPL model M = (E,H,A, {Ei }i∈A, {λi }i∈A, {�i }i∈A, V ), the preference
update model M !ϕ with respect to the distinguishing formula ϕ is a tuple

M !ϕ = (E,H,A, {Ei }i∈A, {λi }i∈A, {�i }i∈A, {�∗i }i∈A, V )
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where the updated preference orders �∗i are defined as

�∗i :=�i \ {(H , H ′) : H , t |�M ϕ and H ′, t |�M ¬ϕ for any t}.

In this formalism, we note that preference updates are independent from the clock,
depending only on the distinguishing formulas.

The language L∗ of this system is specified as follows for p ∈ P , i ∈ A:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | ©ϕ | ϕUϕ | ♦iϕ | [!ϕ]ϕ

As before, we take implication→ as an abbreviation.
Given a model M and a distinguishing formula ϕ, the semantics of the preference

update modality is given as follows.

H , t |�M [ϕ!]ψ iff H , t |�M !ϕ ψ

The dual of the [·!] modality is denoted with 〈·!〉 and defined in the usual sense.
It is now important to observe that �∗i is indeed a preference order.

Lemma 4.1 Let �i be a preference order. For a given ϕ, the updated relation �∗i with
respect to the distinguishing formula ϕ is also a preference order.

Proof Let �i be a preference order. Let ϕ be the distinguishing formula with which
we will update the preference relation.

The updated preference �∗i is reflexive since the model we have is not inconsistent
and no history H satisfies a contradictory formula. Therefore, no tuple (H , H) can be
removed from �i , which is known to be reflexive. Thus, �∗i is reflexive as well.

In order to show the transitivity of �∗i , let us consider H �∗i H ′ �∗i H ′′ where
H �

∗
i H ′′. By definition, we have H �i H ′ �i H ′′ and consequently H �i H ′′.

Then, since we assumed that H �
∗
i H ′′ for the distinguishing formula ϕ, we have

H , t |� ϕ and H ′′, t |� ¬ϕ. Then, for H ′, t we have two options. It either satisfies
ϕ or ¬ϕ. If H ′, t |� ϕ, then ϕ is the distinguishing formula for the tuples H ′, t and
H ′′, t , resulting in the elimination of H ′ �∗i H ′′. Otherwise, if H ′, t |� ¬ϕ, then,
similarly ϕ acts as the distinguishing formula for the tuples H , t and H ′, t , resulting
in the elimination of H �∗i H ′. In either case, we obtain a contradiction. Consequently,
H �∗i H ′′. Thus, �∗i is transitive.

Hence, �∗i is a preference order. ��
The additional set of axioms for the dynamic preference modality is given as fol-

lows.

1. [ϕ!]p ↔ p
2. [ϕ!]¬ψ ↔ ¬[ϕ!]ψ
3. [ϕ!](ψ ∧ χ)↔ [ϕ!]ψ ∧ [ϕ!]χ
4. [ϕ!](ψ ∨ χ)↔ [ϕ!]ψ ∨ [ϕ!]χ
5. [ϕ!]Kiψ ↔ Ki [ϕ!]ψ
6. [ϕ!]©ψ ↔©[ϕ!]ψ
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7. [ϕ!](ψUχ)↔ ([ϕ!]ψ)U ([ϕ!]χ)

8. [ϕ!]♦iψ ↔ (¬ϕ ∧ ♦i [ϕ!]ψ) ∨ ♦i (ϕ ∧ [ϕ!]ψ)

The additional proof rule required for the dynamicmodality is necessitation, defined
in the usual sense: � ψ ∴ � [ϕ!]ψ . We call this system HBPL*.

The axioms of HBPL* are sound. The soundness proof is a standard induction on
the length of the formulas, hence skipped.

Lemma 4.2 The axioms of HBPL* are sound.

Based on this axiomatization, it is easy to see that [·!] is self-dual. In order to see
this, consider [ϕ!]¬ψ . By Axiom 2 above, it is equivalent to ¬[ϕ!]ψ . Dually, this
equals to 〈ϕ!〉¬ψ . The choice of ϕ and ψ was arbitrary, therefore [ϕ!]ψ ≡ 〈ϕ!〉ψ .

The above axioms system acts as a set of reduction functions from HBPL* to HBPL,
reducing the complexity of dynamic preference formulas to the formulas in the lan-
guage of HBPL.

The Boolean cases for this reduction are immediate. Let us consider the epistemic
case in a given model M . We start with H , t |�M [ϕ!]Kiψ .

H , t |�M [ϕ!]Kiψ iff H , t |�M !ϕ Kiψ

iff ∀H ′.Ht ∼i H ′
t , H ′, t |�M !ϕ ψ

iff ∀H ′.Ht ∼i H ′
t , H ′, t |�M [ϕ!]ψ

iff H , t |�M Ki [ϕ!]ψ

The above argument is sound as the preference updates do not affect the epistemic
accessibility relations. The proof of soundness for the reduction axiom for the next-
time operator is along the same lines, hence skipped. The until modality is intriguing.
We start with H , t |�M [ϕ!](ψUχ).

H , t |�M [ϕ!](ψUχ) iff H , t |�M !ϕ ψUχ

iff ∃k ≥ t . H , k |�M !ϕ χ and

∀l . t ≤ l < k, H , l |�M !ϕ ψ

iff ∃k ≥ t . H , k |�M [ϕ!]χ and

∀l . t ≤ l < k, H , l |�M [ϕ!]ψ
iff H , t |�M ([ϕ!]ψ)U ([ϕ!]χ)

Next, let us consider the axiom for reducing the preference modality. We start with
H , t |�M [ϕ!]♦iψ . After taking ϕ as a distinguishing formula, we have two options:
the current history does not satisfy the distinguishing formula ϕ or the accessible
histories do not satisfy ¬ϕ. We consider both cases separately.

H , t |�M [ϕ!]♦iψ iff H , t |�M !ϕ ♦iψ

(Case 1 : ϕ is not satisfied at the current state)
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iff H , t |�M !ϕ ♦iψ and H , t |�M ¬ϕ

iff H , t |�M ¬ϕ and ∃H ′.H �i H ′ such that

H ′, t |�M !ϕ ψ

iff H , t |�M ¬ϕ and H ′, t |�M [ϕ!]ψ f or H �i H ′

iff H , t |�M ¬ϕ and H , t |�M ♦i [ϕ!]ψ
iff H , t |�M ¬ϕ ∧ ♦i [ϕ!]ψ

(Case 2 : ¬ϕ is not satisfied at accessible histories)

iff H ′, t |�M !ϕ ψ for H �i H ′

(as H ′ cannot satisfy ¬ϕ in M)

iff H ′, t |�M !ϕ ψ for H �i H ′ and H ′, t |�M ϕ

iff H ′, t |�M [ϕ!]ψ and H ′, t |�M ϕ for H �i H ′

iff H ′, t |�M [ϕ!]ψ ∧ ϕ for H �i H ′

iff H , t |�M ♦i (ϕ ∧ [ϕ!]ψ)

(combiningCases 1and2disjunctively:)

iff H , t |�M (¬ϕ ∧ ♦i [ϕ!]ψ) ∨ ♦i (ϕ ∧ [ϕ!]ψ)

It is important to note that for the case of consecutive updates [ϕ!][ψ !]χ , we do not
have a general reduction axiom. Yet, together with the necessitation rule for [·!], we
still have a complete axiom system,3 as we will now show.

We call a formula ϕ update-free if it does not contain any subformula with the
preference update modality [·!]. Our completeness argument rests on a rewriting of
any formula to a logically equivalent update-free formula.

Lemma 4.3 Every formula inHBPL* can be rewritten as a logically equivalent update-
free formula.

Proof The argument is based on a translation t on the formulas of HBPL* which will
mimick the axioms of HBPL* to “simplify” the complex formulas.

By the soundness of the necessitation rule for [·!], we can translate formulas with
consecutive updates of type [ϕ!][ψ !]χ from “inside out” (Moss 2015). We define the
translation function t as follows.

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ)

t(Kiϕ) = Ki t(ϕ)

t(♦iϕ) = ♦i t(ϕ)

t(©ϕ) = ©t(ϕ)

3 For a detailed exposition of such reductions in the context of dynamic epistemic logic, we refer the reader
to Moss (2015).
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t(ϕUψ) = t(ϕ)Ut(ψ)

t([ϕ!]p) = p

t([ϕ!]¬ψ) = ¬t([ϕ!]ψ)

t([ϕ!](ψ ∧ χ)) = t([ϕ!]ψ) ∧ t([ϕ!]χ)

t([ϕ!](ψ ∨ χ)) = t([ϕ!]ψ) ∨ t([ϕ!]χ)

t([ϕ!]Kiψ) = Ki t([ϕ!]ψ)

t([ϕ!]©ψ) = ©t([ϕ!]ψ)

t([ϕ!](ψUχ)) = t([ϕ!]ψ)Ut([ϕ!]χ)

t([ϕ!]♦iψ) = (¬ϕ ∧ ♦i t([ϕ!]ψ)) ∨ ♦i (ϕ ∧ t([ϕ!]ψ))

t([ϕ!][ψ !]χ) = t([ϕ!]t([ψ !]χ))

Wenote that the form of the final case of this definitionmeans that t is not defined by
straightforward structural induction. Nevertheless, the function t can be shown to be
well-defined by lexicographic induction on the number of updates and the length of the
formula. Alternatively, the translation may be formulated by means of two inductively
defined functions, mimicking the lexicographic induction; see “Appendix” for details.

Let us argue here how the translation function works for consecutive updates.
Consider |� χ . By soundness of the necessitation rule, |� [ψ !]χ . By the induction
hypothesis, |� t([ψ !]χ) is an update-free formula.By another application of the sound-
ness of the necessitation rule,we obtain |� [ϕ!]t([ψ !]χ)where t([ψ !]χ) is update-free.
Another application of the t function yields t([ϕ!][ψ !]χ) = t([ϕ!]t([ψ !]χ)). ��

The completeness of HBPL* follows.

Theorem 4.4 HBPL* is complete with respect to the axiomatization given.

Proof We will prove that for any ϕ ∈ L∗, it follows that � ϕ ↔ t(ϕ).
The argument is by lexicographic induction on the number of updates and the

complexity of ϕ. The cases for the Booleans, (static) modals and the update operator
are self-evident using proof rules of modal and propositional logic and the induction
hypothesis. In what follows, we prove the theorem for ϕ = [α!][β!]γ .

The induction hypothesis says that for all ψ with fewer number of updates than ϕ,
we have � ψ ↔ t(ψ). Now, let us consider the case ϕ = [α!][β!]γ .

1. � [β!]γ ↔ t([β!]γ )

2. � [α!][β!]γ ↔ [α!]t([β!]γ )

3. � [α!]t([β!]γ )↔ t([α!]t([β!]γ ))

4. � [α!][β!]γ ↔ t([α!]t([β!]γ ))

A brief narration of the proof is in order. We first start with considering an instance of
the induction hypothesis for the formula [β!]γ . Then, by the necessitationwith [α!], we
obtainLine 2.Now, it is possible to apply the induction hypothesis to [α!]t([β!]γ ) since
it has fewer updates than [α!][β!]γ . Next, we obtain Line 3 by the induction hypothesis
with the formula [α!]t([β!]γ ). Lines 2 and 3 produce Line 4 by propositional logic.
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Since t([ϕ!][ψ !]χ) = t([ϕ!]t([ψ !]χ)) by definition, we conclude the expected result:
� [α!][β!]γ ↔ t([α!][β!]γ ). ��

An immediate by-product of the above result is the decidability of HBPL*.

Theorem 4.5 HBPL* is decidable.

Proof The proof follows from Theorems 3.2 and 4.4. ��

The logicHBPL* presents a logical characterization of dynamic preference updates.
A potential application of HBPL* is to analyze game theoretical equilibria in this
context. Furthermore, considering the translation between history based models and
interpreted systems (Pacuit 2007), our results can be applied to interpreted systems
where program runs with dynamic preferences can be constructed.

5 Further Applications

In what follows, we relate HBPL* to some other well-known dynamic systems
and examine how HBPL* may position itself within the domain of dynamic epis-
temic/temporal logics. We start with arrow update logic and then consider an event
calculus to suggest a product update for HBPL*.

5.1 Arrow Update Logic and Dynamic Preference Updates in History BasedModels

A recent work on dynamic epistemic logic suggests an alternative formalism to update
models (Kooi and Renne 2011). In this method, called “arrow updates”, relational
arrows are eliminated without eliminating the states. Arrow update logic (AUL, for
short) discusses this methodology in a dynamic epistemic framework and compares it
to other dynamic epistemic paradigms. Considering the similarities in the methodolo-
gies of both arrow update models and history based models, we carry the discussion
over to dynamic preference logic and give a history based model for AUL. This intro-
duces histories into AUL, and advances our study of dynamic preference updates in
history based models. As such, we broaden our formal toolkit to discuss game theo-
retical preferences.

The syntax of AUL is based on the standard language of modal logic augmented by
the arrow update modality [U ]. The arrow update modality depends on a set U , which
is constructed as follows, for i ∈ A:

U :: = (ϕ, i, ϕ) | (ϕ, i, ϕ) ∪U

The setU is called an “arrow specification”. In our context it denoteswhich preferences
(that is relational arrows for the preferences) will be kept in the model after an update
[U ]. It is important to notice that the arrow specification sets does not have any semantic
closure condition.
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Let us now interpret AUL in history based models. Given a HBPL model M =
(E,H,A, {Ei }i∈A, {λi }i∈A, {�i }i∈A, V ), we define an arrow update model

M×U = {E×,H×,A×, {E×i }i∈A, {λ×i }i∈A, {�×i }i∈A, V×)

with respect to a set of arrow specifications U as follows, for i ∈ A and for any t .

E× := E
H× := H
λ×i := λi

E×i := Ei

A× := A
V× := V

�×i := {(H , H ′) ∈ �i | ∀t .∃(ϕ, i, ϕ′) ∈ U : H , t |�M ϕ and H ′, t |�M ϕ′}
If the arrow specification set U that is used to arrow-update the preference relation
�i needs to be made explicit, we will use the notation �×i [U ]. Furthermore, the
quantification on the time stamp t suggests that the arrow update is carried out over all
time points. The alternative quantification (that is ∃(ϕ, i, ϕ′).∀t) would suggest that
once the arrow specification is fixed, it does not change over time. This is a very strong
approach to dynamic epistemology and does not address our concerns. Inwhat follows,
we will prove our results for an arbitrary time stamp t which can be generalized to all
t .4

Different from the most dynamic update methodologies, arrow updates specify
which relational arrows are to be kept in the model after an update. Yet, this spec-
ification is controlled by a set which does not have any semantic closure condition.
Consequently, the relation �×i obtained after the arrow update is not necessarily S4,
thus may not be a preference relation. Then, how can we capture preference updates
�∗i using arrow updates and specification sets? This is what we focus on in the sequel.

Now, let ϕ be a distinguishing formula which will control the preference update for
the preference relation �i for i . How can we construct an arrow specification set for
this update?

We start by considering the following arrow specification sets for the preference
relation �i , distinguished formula ϕ and agent i :

Arrow(ϕ,�i ) :={(¬ϕ, i, ), ( , i, ϕ)}
StrongArrow(ϕ,�i ) :={(¬ϕ, i, ϕ)}

Both “Arrow” and “StrongArrow” approximate the updated relation�∗i .We denote the
corresponding updated preference relations as “�×i [Arrow]” and “�×i [StrongArrow]”,
respectively.

Theorem 5.1 For a given preference relation �i in a HBPL* model M, let �∗i be the
updated preference relation with respect to the distinguishing formula ϕ. Then,

�×i [StrongArrow] ⊆ �∗i ⊆ �×i [Arrow].
4 It is important to notice that the time element introduces a second dimension for the epistemic issues
we discuss. Different combinations of quantification over histories and time stamps may suggest new
approaches to deletion-based dynamic logics, including sabotage logics (van Benthem 2005). As such, the
current system can be used to develop extensions of those systems.
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Proof Let (H , H ′) ∈ �i .
Assume that (H , H ′) ∈ �×i [StrongArrow]. Therefore, for any t , we have H , t |�

¬ϕ and H ′, t |� ϕ. Then, by definition, (H , H ′) ∈ �∗i . Thus,�×i [StrongArrow] ⊆ �∗i
Now, assume that (H , H ′) ∈ �∗i . Thus, either H , t |� ¬ϕ or H ′, t |� ϕ for any t .

For the prior case, there is a tuple (¬ϕ, i, ) ∈ Arrow(ϕ,�i ) so that (H , H ′) ∈ �×i .
For the latter case, similarly, there exists a tuple ( , i, ϕ) ∈ Arrow(ϕ,�i ) so that
(H , H ′) ∈ �×i .

Hence, �∗i ⊆ �×i [Arrow]. ��
Furthermore, we observe that the relation �×i [Arrow] is S4. This is important

because, independent from its relation to �∗i , it suggests a way to construct an S4
arrow update with an explicit arrow specification set. Later on, we will make the
connection between �∗i and �×i [Arrow] more precise.

Proposition 5.2 The relation �×i [Arrow] is reflexive and transitive.

Proof Consider an arbitrary history H at t . If H , t |� ϕ, then (H , H) ∈ �×i [Arrow]
since there is a specification ( , i, ϕ) ∈ Arrow(ϕ,�i ). Otherwise, if H , t |� ¬ϕ,
then we still have (H , H) ∈ �×i [Arrow] as there is a specification (¬ϕ, i, ) ∈
Arrow(ϕ,�i ). In each case, �×i [Arrow] is reflexive.

To prove transitivity, take (H , H ′) ∈ �×i [Arrow] and (H ′, H ′′) ∈ �×i [Arrow].
There are four possibilities for the tuples H , H ′ and H ′, H ′′ depending on their arrow
specification:

(i) H , t |� ¬ϕ and H ′, t |�  H ′, t |� ¬ϕ and H ′′, t |�  
(ii) H , t |� ¬ϕ and H ′, t |�  H ′, t |�  and H ′′, t |� ϕ

(iii) H , t |�  and H ′, t |� ϕ H ′, t |� ¬ϕ and H ′′, t |�  
(iv) H , t |�  and H ′, t |� ϕ H ′, t |�  and H ′′, t |� ϕ

Now, the case (iii) is impossible as we cannot have H ′, t |� ϕ∧¬ϕ. For the remaining
cases, we have (H , H ′′) ∈ �×i [Arrow]. For the cases (i) and (ii) we use the specifica-
tion (¬ϕ, i, ) whereas for the case (iv) we use ( , i, ϕ).

Thus, �×i [Arrow] is reflexive and transitive. ��
On the other hand, �×i [StrongArrow] is not reflexive.

Proposition 5.3 The relation �×i [StrongArrow] is not reflexive.

Proof We observe that (H , H) /∈ �×i [StrongArrow] since we cannot have H , t |�
ϕ ∧¬ϕ for any history–time pair H , t . Thus, �×i [StrongArrow] is not reflexive, thus
cannot produce an S4 modality. ��

Then, the natural question is the connection between and �∗i and �×i [Arrow].
Theorem 5.4 For a given preference relation �i in a HBPL* model M, let �∗i be
the updated preference relation with respect to the distinguishing formula ϕ. Let
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�×i [Arrow] be an arrow-updated preference relation based on the specification set
Arrow(ϕ,�i ) = {(¬ϕ, i, ), ( , i, ϕ)} for the preference relation �∗i .

Then, �∗i = �×i [Arrow].

Proof We only need to show that �×i [Arrow] ⊆ �∗i .
Let (H , H ′) ∈ �×i [Arrow] be an arbitrary tuple. Then, there exists an arrow update

specification tuple (α, i, β) ∈ Arrow(ϕ,�i ) such that H , t |� α and H ′, t |� β for
any t . There are only two possibilities for the arrow specification in Arrow(ϕ,�i ):
either (α, i, β) = (¬ϕ, i, ) or (α, i, β) = ( , i, ϕ).

In the former case, we have H , t |� ¬ϕ and H ′, t |�  for any t . Hence, by
definition, (H , H ′) ∈ �∗i . In the latter case, we have H , t |�  and H ′, t |� ϕ for
any t . Hence, by definition, (H , H ′) ∈ �∗i . In either case, we have the desired result:
�×i [Arrow] ⊆ �∗i .

Thus, �∗i = �×i [Arrow]. ��
The above theorem illustrates how it is possible to recover the update methodology

of HBPL* using that of AUL by paying special attention to the arrow specifications
and restricting them to specific sets.

So far, we have discussed the relational aspects of arrow updates, particularly the
way that AUL manipulates the relations. Next, we discuss how the semantics for the
arrow updates can be given in history based models. For a specification set U , the
arrow update modality [U ] can be defined in HBPL* as follows.

H , t |�M [U ]ϕ iff H , t |�M×U ϕ

This definition specifies what remains to be true after an arrow update using a
given specification set U . Depending on the syntactic complexity of ϕ, it is possible
to internalize the update using the axioms of AUL.

The axioms of AUL introduce reduction axioms for the dynamic modality [U ] and
are built on the axioms of classical unimodal logic. In what follows, we only give the
axioms governing the arrow update modality where p ∈ P .

• [U ]p ↔ p
• [U ]¬ϕ ↔ ¬[U ]ϕ
• [U ](ϕ ∧ ψ) ↔ ([U ]ϕ ∧ [U ]ψ)

• [U ](ϕ ∨ ψ) ↔ ([U ]ϕ ∨ [U ]ψ)

• [U ]Kiϕ ↔∧
(ψ,i,χ)∈U (ψ → Ki (χ → [U ]ϕ))

It is a straightforward exercise to see the soundness of these axioms in history based
arrow update models M ×U in a similar way we have done for HBPL*. We leave it to
the reader.5 Therefore, these axioms are sound for HBPL*.

Now, we observe that from a given HBPL* model, we can obtain the same updated
model using both arrow-updates and dynamic preference updates.

5 We refer the reader to Moss (2015) for a general overview of reduction algorithms in dynamic epistemic
logic.
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Theorem 5.5 Let M = (E,H,A, {Ei }i∈A, {λi }i∈A, {�i }i∈A, V ) be a givenHBPL* model
and ϕ be a formula.

Then, M !ϕ = M × Arrow(ϕ,�i ) where Arrow(ϕ,�i ) = {(¬ϕ, i, ), ( , i, ϕ)}.
Proof Follows immediately based on Theorem 5.4. ��

Arrow updates offer alternative methods to update preferences. For example, con-
secutive arrow updates can be composed and the same methodology can be carried
over to preference updates via arrow updates. Let U and U ′ be two sets of arrow
update specifications. The composition of U with U ′, denoted by U ◦ U ′, is defined
as follows (Kooi and Renne 2011).

Definition 5.6 For two arrow update specifications U and U ′, the composition U ◦U ′
is defined as follows:

U ◦U ′ := {(ϕ ∧ [U ]ϕ′, i, ψ ∧ [U ]ψ ′) : (ϕ, i, ψ) ∈ U , (ϕ′, i, ψ ′) ∈ U ′}

Composing arrow updates can be handy. The following axiom of AUL describes
how it can be achieved [ibid]:

• [U ][U ′]ϕ ↔ [U ◦U ′]ϕ
However, composing the individual elements of an arrow update specification set

does not necessarily produce the arrow specification set for a preference update.

Example 5.7 LetU = {(¬ϕ, i, )} andU ′ = {( , i, ϕ, )}, separating the specification
set Arrow(ϕ,�i ). Then, U ◦U ′ �= Arrow(ϕ,�i ) and U ′ ◦U �= Arrow(ϕ,�i ). Thus,
neither U ◦U ′ nor U ′ ◦U is equivalent to �i for the distinguishing formula ϕ.

In conclusion, the preference updates of HBPL* cannot be achieved by two consec-
utive arrow updates specified by U and U ′.

Composing certain arrow update specifications allows us to define consecutive
updates. Let us see how it works.

Given a preference relation �i , let ϕ be the distinguishing formula to obtain the
updated relation�∗i , andψ be the distinguishing formula to obtain the updated relation
�∗∗i from �∗i . How can we then characterize the update from �i to �∗∗i using both
approaches?

In order to apply Theorem5.1,we start by defining the following arrow specification
sets:

Arrow(ϕ,�i ) ={(¬ϕ, i, ), ( , i, ϕ)}
Arrow(ψ,�∗i ) ={(¬ψ, i, ), ( , i, ψ)}

Theorem 5.1 shows that Arrow(ϕ,�i ) and Arrow(ψ,�∗i ) describe the prefer-
ence updates using the arrow update logic methodology. Therefore, the update

�i
[ϕ!]−−→�∗i

[ψ !]−−→�∗∗i can be characterized by the composition [Arrow(ψ,�∗i ) ◦
Arrow(ϕ,�i )]:

[ψ !][ϕ!]χ ↔ [Arrow(ψ,�∗i ) ◦ Arrow(ϕ,�i )]χ.
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The proof of the above claim follows directly from the definitions and Theorem 5.5.
We leave it to the reader.

5.2 Product Updates: Histories Versus PossibleWorlds

An interesting strategy to incorporate Kripke models into history based models is to
combine histories/events with states or possible worlds. This approach generates a
cartesian product of histories and states, producing a complex and expressive system.

If histories are thought of expressing sequences of events taking place over time,
then states can be thought of describing them over space. Their cartesian product,
therefore, describes how histories develop over time and space. This provides histories
with extensionality. Such an approach expands the applicability of our logical toolkit
to a broader set of games. Furthermore, product updates with histories enables us to
express game states independent of history–time pairs. As such, the way that game
states and history–time pairs are associated (which is the product-update construction)
allows us to reason in and about games from a richer dynamic epistemic framework.
Furthermore, froma technical angle, action/productmodels in dynamic epistemic logic
were defined using single events (Baltag et al. 1998). In what follows, we also extend
this approach to histories, perceived as sequences of events, suggesting a multi-event
based multi-agent system. Therefore, product updates naturally extend event models
to history models. From a philosophical angle, this allows us to reason about games
beyond single actions and moves and focus on game theoretical behavior, expressed
as histories. Product updates of worlds and history–time pairs bring us closer to this
goal.

For the completeness of our treatment, let us recall how Kripke models are defined.
A Kripke model K is a tuple K = (W , R, V ) where W is a non-empty set of
states/worlds, R is a binary relation defined on W and V : P 	→ ℘(W ) is a val-
uation function. In this model, the relation R is a preference relation on the states
where wRv means that the state v is preferable to w. It is possible to perceive R
as another preference relation or a universal and objective preference ranging over
states. We denote the modality associated with R by ♦. The ♦ modality will denote
the preferences both in the language of the Kripke models and the history models.
It will be clear from the context in which system it is used. We denote the unimodal
language with the ♦ by L♦. Similarly, the updated preference relation R∗ is defined
as expected in Kripke models: R∗ = R − {(v, v′) : K , v |� ϕ and K , v′ |� ¬ϕ} for
a certain ϕ which is used to update the model. The update model K !ϕ will have the
same domain and valuation. By a slight abuse of notation, the formula [ϕ!]will denote
the preference update by the formula ϕ.

Let us now describe how to incorporate Kripke models into HBPL* to define (pref-
erential) product updates (Gerbrandy 1999; van Ditmarsch et al. 2007). First, for a
given HBPL* model M , we define a precondition function pre which assigns a pre-
condition formula in L♦ to history–time tuples (h, t). Since pre is a function, there
is a precondition formula for each history–time tuple. From a technical perspective,
pre will allow us to take the product of history–time pairs and Kripke worlds: the
product tuple (w; h, t) of a worldw and history–time pair (h, t)will exists if and only
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if w |�K pre(h, t). For clarity in reading, we write (w; h, t) for the product of Kripke
state w and the history–time tuple h, t . Now, we define the product update models as
follows.

Definition 5.8 Given a HBPL* model M and a Kripke model K , the product update
model M × K is defined as follows:

• The domain is {(w; h, t) : w is a world in K , h is a history in M and w |�K

pre(h, t) for some t},
• Thenewpreference relation R� over state/history–timepairs (w; h, t)R�(w′; h′, t)
is satisfied if and only if wRw′ and h � h′ for some fixed time t ;

• The new epistemic relation R∼ over state/history–time pairs(w; h, t)R∼(w′; h′, t)
is satisfied if and only if wRw′ and h∼h′ for some fixed time t ;

• The new temporal relation R+ over state/history–time pairs(w; h, t)R+(w′; h, t ′)
is satisfied if and only if wRw′ and t ′ = t + 1 for some fixed history h;

• Theproduct-state (w; h, t) satisfies propositional atom p ∈ P if andonlyw |�K p.

In order to keep the technical details at a minimum, the definition above was given
for a single agent, and it can be extended to a multi-agent setting using standard
methods. Furthermore, the additional relations R�, R∼ and R+ defined for the prod-
uct model can also be associated to box-like modal operators [R�], [R∼] and [R+],
respectively. In order to keep technical details at a minimum, we skip such details.

Theproduct update in our system is controlledby anewdynamicmodality 〈M; h, t〉.
The semantic of the product update modality is given as follows.

w |�K 〈M; h, t〉ϕ iff w |�K pre(h, t) implies (w; h, t) |�M×K ϕ

Notice that for those history–time (h′, t ′) pairs where (w; h′, t ′) is not defined (that
is, where w �|�K pre(h′, t ′)), the formula 〈M; h′, t ′〉ϕ always holds vacuously at w

for any ϕ.
The completeness of product update of history based models can be proved imme-

diately using the standard methods presented in Baltag et al. (1998). The standard
approach reduces the syntax of product models to that of HBPL. For the completeness
of our treatment, let us give the term reduction � inductively as follows.

• 〈M; h, t〉p � pre(h, t)→ p
• 〈M; h, t〉¬ϕ � pre(h, t)→ ¬〈M; h, t〉ϕ
• 〈M; h, t〉(ϕ ∧ ψ) � pre(h, t)ϕ ∧ pre(h, t)ψ
• 〈M; h, t〉(ϕ ∨ ψ) � pre(h, t)ϕ ∨ pre(h, t)ψ
• 〈M; h, t〉[R�]ϕ � pre(h, t)→∧{[R∼]〈M; k, t〉ϕ : h � k}
• 〈M; h, t〉[R∼]ϕ � pre(h, t)→∧{[R∼]〈M; k, t〉ϕ : h ∼ k}
• 〈M; h, t〉[R+]ϕ � pre(h, t)→∧{[R∼]〈M; h, t ′〉ϕ : t ′ = t + 1}
Briefly, let us see how the term reduction � works for the propositional case. Con-

sider w |�K 〈M; h, t〉p at a state w for a propositional variable p. Then, by definition
we have that w |�K pre(h, t) implies (w; h, t) |�M×K p. By the construction of
the product model, the product state (w; h, t) satisfies a formula if it is constructed
by the method we gave in Definition 5.8. Thus, if w |� pre(h, t), then, again by
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Definition 5.8, w |� p. Therefore, the reduction function � translates 〈M; h, t〉p to
pre(h, t)→ p. The other cases can be shown similarly.

Next, we observe whether various properties of history based models are preserved
in the product models.

Lemma 5.9 History based product models satisfy epistemic perfect recall and prefer-
ential perfectness.

Proof We present a proof only for the case for epistemic perfect recall, as the proofs
for the other cases are similar.

Epistemic perfect recall is defined by the formula [R∼][R+]ϕ → [R+][R∼]ϕ.
As we have demonstrated earlier, this property is valid in history based models.
In order to show that it is also valid in history based product models, we start by
assuming (w; h, t) |� [R∼][R+]ϕ at an arbitrary product state (w; h, t) and a for-
mula ϕ. Then, by definition, for all product tuples (w′; h′, t) with wRw′ and h∼i h′,
we have (w′; h′, t) |� [R+]ϕ. Consequently, for all product tuples (w′′; h′, t + 1)
with w′Rw′′, we have (w′′; h′, t + 1) |� ϕ. Now, by definition, since we have
w′Rw′′ and h∼i h′, we conclude that (w′; h, t + 1) |� [R∼]ϕ. Similarly, since
wRw′, we can take another step back to deduce (w; h, t) |� [R+][R∼]ϕ. Thus,
(w; h, t) |� [R∼][R+]ϕ → [R+][R∼]ϕ for an arbitrary product state (w; h, t).

Theproof for preferential perfectness (which is definedby the formula [R�][R+]ϕ →
[R+][R�]ϕ) is similar, thus skipped. ��

Product updates are sometimes labeled as the “most powerful epistemic update
calculus” (van Benthem and Liu 2007). Now, we will take advantage of this powerful
tool to illustrate various game theoretical situations in our model.

One of our motivations for introducing preferential product updates over histo-
ries is to express various game theoretical situations and notions such as “delayed
gratification” (that is the “marshmallow test”), “temptation” and “self-control”. The
phenomenon of delayed gratification occurs as people tend to prefer good things now
to better things later. The marshmallow test is a well-known example for this phe-
nomenon.6 In this test, children are found to fail at delaying gratification—they choose
to have one marshmallow now, rather than waiting for a little while to get an additional
marshmallow. Not waiting for a better outcome suggests that the agents’ preferences
change after a certain time—they rush now and update their preferences and violate
their rational commitments. Product updates are ideal candidates to model this situa-
tion as they will include states to express the worlds with one and two marshmallows,
histories to denote the events of waiting and eating, and a dynamic preference update
operator to characterize the preference change, which triggers the agent to have one
marshmallow now rather than waiting for the second.

Let us set up themodel. The state one is the statewhere there is onemarshmallow on
the plate and two is the statewhere there are two.Naturally, we have oneRtwo.We also
assume that the players rationally prefer to have a marshmallow later. That is eat �
wait.eat.eat, denoting that the agent prefers to have two marshmallow by waiting.

6 See a relevant video at http://youtu.be/QX_oy9614HQ, and the Wikipedia entry at (http://en.wikipedia.
org/wiki/Stanford_marshmallow_experiment).
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one two
R

eat wait.eat.eat

one, eat

two,wait.eat.eat

R
one, eat

Fig. 2 TheKripke (upper-left), the history based (upper-right) models; their product (lower-left), and finally
the updated product models

The preconditions pre for the histories are given as follows: pre(eat, 0) = irr and
pre(wait.eat.eat, 1) = rat where irr and rat are propositional formulas, indicating
that it is irrational to eat the marshmallow now without waiting and it is rational to
wait and then eat more, respectively. Similarly, we have one |� irr and two |� rat .
What happens is, contrary to their game theoretical and rational commitments, the
agents update their preferences to have the irrational choice.

However, these two situations are described in different models: one in a Kripke
model and the other one in a history based model. The natural question is how to
combine them into a single model to express the two-dimensions of preferences: one
over the quantities of marshmallow and the other over the histories. This is what our
product update achieves.

Let us now see how the failure of the delayed gratification phenomenon can be
described by a product update. We have two states one and two, and two histories
wait andwait.eat.eat, as we mentioned earlier. The proposition irr is satisfied at both
the world one and the history–time pair eat, 0 at time 0; and similarly, rat is satisfied
at both two and wait.eat.eat, 1. Similarly, we have oneRtwo and eat � wait.eat.eat,
yielding the product preference R� as follows, with a slight abuse of notation (See
Fig. 2):

(one; eat, 0) R� (two;wait.eat.eat, 1)

The product update combines theworldswith histories, respecting the propositional
valuations. Yet, as such, it does not express the preference updates. For this, we will
use the [·!] operator of HBPL* in order to expresses the breaking point of the agent’s
preference, yielding a rushed preference over one marshmallow with a shorter history.

The first task is to determine the distinguishing formula which triggers the pref-
erence update over world-history pairs. The distinguishing formula is irr which
symbolizes that the agent suddenly prioritizes being irrational and rushes to having
one marshmallow. Notice that irr is only satisfied at one and eat, 0.
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The phenomenon of the marshmallow test, thus, is expressed as follows

one, eat |� 〈M; eat, 0〉[irr !]noDGC

where the formula noDGC represents the choice induced by the failure of delayed
gratification phenomenon – eating the marshmallow now.

Our framework allows various generalizations of the marshmallow test, enriching
the discussions regarding the game theoretical interpretation of the phenomenon. One
way is to consider a version of the marshmallow test which takes place in the future.
In this version, agents are given two choices: one marshmallow at time t in the future
or two marshmallows at time t + k. In this case, it can be thought that people may
favor waiting rather than rushing to having one marshmallow. This hypothetical case
contrasts itself very clearly with the original test where the comparison is between
now and some time in the future. Another generalization is the case of multiple states
with n marshmallows incremented by one at each step. The test of n-marshmallows
can be used to identify the cutting-point of where agents give up waiting for more. Our
framework can easily express such cases. Such generalizations allow us to consider
the interaction between the next-time modality© and the dynamic modalities [·!] and
〈M; h, t〉 in order to have a more nuanced description of the phenomenon of delayed
gratification together with its potential extensions and generalizations.

In conclusion, product updates for history based models achieve the following.
First, from a technical angle, they extend event-based product models to history-
based models, allowing us to experiment with sequences of events and their temporal
and epistemic qualities. Second, they incorporate possible worlds into history based
models, suggesting a rich area of applications. As we exemplified, the additional
formalism becomes necessary to characterize various interesting game theoretical
situations.

5.3 Further Approaches to Dynamic Model Updates

The preference update we have introduced forms the basis of further work reported
in Anderson et al. (2016), which introduces a logic for reasoning about uncertain
preferences. In that work, history based preference models are extended with sets
of preference relations for each agent. A corresponding preference update is defined
using a set of distinguishing formulae: this update accounts for a change that alters
preferences in an uncertain manner. The leading example is (lack of) compliance with
newly introduced policies. Agents may have a limited appetite for complying with
policies which run counter to their original preferences. The introduction of such a
policy will amend the agents’ preferences, but the extent to which they will update
their decision making is uncertain, so a set of possible new preferences is generated.

Anderson et al. (2016)’s work is still at a preliminary stage of development: the
syntax and semantics of the logic are presented but no proof system or metatheory are
developed. Nevertheless this work provides a starting point for an analysis of decision
making under uncertainty, or incomplete information reasoning, using history based
preference models.
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6 Comparison with OtherWork

The original work that initiated history based models aims at analyzing the epistemic
role of messages (Parikh and Ramanujam 2003). The authors then briefly discuss
Gricean implicatures, motivated by various Wittgensteinian issues. The messages
themselves and the way they were defined using histories strongly resembles sig-
naling games. It would not be wrong to claim that the authors have come close to
game theoretical concepts, but have not taken the next step. The current paper there-
fore can be seen as an investigation towards the direction that was implicitly addressed
in Parikh and Ramanujam (2003).

As we argued, there is an explicit connection between program runs and histo-
ries (Pacuit 2007). Pacuit addressed this relation and showed how histories and runs
(in interpreted systems) can be converted to each other. Even if Pacuit himself pointed
out a potential game theoretical application of history based models, a clear idea or an
application of games with histories was lacking. This motivated our work for intro-
ducing preferences to express subjective and game theoretical agency. Clearly, there
is further work to be done. A quantitative and utility-based analysis using histories
remains to be developed.

A brief discussion of dynamic epistemic and temporal logic goes beyond the
scope of this paper. These two frameworks were unified in various ways, almost
uniformly using Kripke models (van Benthem et al. 2007). Epistemic-temporal logics
are well-studied. It remains, however, to investigate how different systems may help
us understand the dynamic interaction between the two as well as how epistemic-
temporal modalities become useful in fundamental game theoretical analysis. The
current paper attempts at contributing to filling in this gap in the literature.

The literature on interpreted systems is rich (Halpern et al. 2004; Fagin et al. 1991,
1995, 1999). It has clear applications in computing and program analysis, which are
the underlying motivation for such models. A run of a program can easily be seen as
a history with a clear temporal element. From this perspective, introducing subjec-
tive preferences into interpreted systems may pave the way towards a broader class of
applications in system analysis, human–computer interaction and artificial intelligence
where programs (and their runs) need to interact with humans with subjective pref-
erences. Such game-like situations require frameworks with preferences, knowledge,
temporality and some other similar modalities. Our logic suggests an ideal framework
for this direction. Moreover, from a philosophical perspective, it suggests the possi-
bility of introducing preferences into computation. This has the potential to lead to a
broader conceptualization of programs, runs and computation.

Modal logical treatment of preferences constitutes a broad literature (Hanson 2001).
A dynamic treatment of preferences was initiated relatively earlier using Kripkean
structures (van Benthem and Liu 2007; van Benthem et al. 2009). Nevertheless, the
structural differences of the update models over different models and semantics have
not been adequately addressed (van Benthem 2014). The current paper can therefore
be seen as a contribution for this issue. Furthermore, the state based approach to
preferences provides a single-shot picture of the situation. As such it fails to portray an
evolutionary description of preferences. Questions such as “which actions yield what
preference?” and “how do preferences evolve over time?” are left unanswered. History
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based models, however, can identify the sequences of actions (that is “histories”)
that bring about certain preferences. From a game theoretical perspective, this is an
important distinction.

Action models, on the other hand, suggest a very powerful way to combine indi-
vidual actions with Kripke models and they can easily be extended to produce product
models with multiple actions (Baltag et al. 1998). Our extension of action models
replaces individual actions in the syntactic structure of the model with a sequence of
histories, providing a richer and fuller picture. This suggests an immediate application
both for action and history models, as we have demonstrated.What remains to be done
is to use action based models for epistemic game theory, where moves are considered
as actions and the epistemic/temporal aspects are used to define game theoretical equi-
libria and rationality. Our work can be viewed as a first step towards this direction,
where game equilibria can be discussed within our framework.

A recent work on action models extend action models with temporal and epistemic
operators (Renne et al. 2016). Their model, however, is based on Kripke models and
uses single-shot action models. It also lacks a clear game theoretical motivation and
applicability. The current work aims at motivating further work on other epistemic
and temporal systems and their applicability to game theory.

Another interesting direction is to study the epistemic and temporal aspects of
blockchain protocols using interpreted systems or history based models (Halpern
and Pass 2017). Blockchain protocols are gaining increasing attention and present
an intriguing direction for epistemic and temporal logics. It is a matter of interesting
debate how preferences would fit in that framework and how agents may have differ-
ent incentives to deviate from the public ledgers of the blockchain protocol. Our work
seems to provide the necessary framework for such inquiries.

The logic HBPL* lacks any methodology to deal with strategies. This is a valid
criticism and can be viewed as a design choice. The literature abounds for logics for
strategies (Lorini andMoisan 2011; Ramanujam and Simon 2008; Başkent 2011). Our
contribution complements this body of work by focusing on preferences rather than
strategies.An immediate futureworkwould be to combine them into a unified structure
which is expressive enough to describe preferences, game theoretical rationality and
strategic reasoning.

7 Conclusion

History based structures have long remained understudied. This paper is an attempt
to change this.

We have presented a history based model to reason about changing preferences,
with a clear motivation from game theory. Consequently, we have studied how our
framework relates to various other well-studied systems in dynamic epistemic logic.
This highlights the potential of history based models both in epistemic and game
theoretical situations.

What our system lacks is an explicit and detailed study of “time”. In our approach,
we used time as a mere tracking device or an indicator. It is however possible to use it
the way it is instrumentalized in linear temporal logics, with a broader modal toolkit
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to express more complex situations including indefinite past and future. This creates
possible new directions for future work.

Another line of research to extend HBPL* is to consider its modal extensions
with deontic and common-knowledge modalities. Such an extension would allow
expressing interesting situations where the agents’ obligations depend on their past
and knowledge, allowing another approach to the “can-ought” problem.

In this paper, we did not take advantage of our system to formalize other game
theoretical concepts including strategies and Nash equilibrium. They fall outside the
scope of the current paper, yet present future work possibilities.
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Appendix: An Alternative Method to Define the Reduction Function t

In what follows, we present an alternative method the define the reduction function t
discussed in the proof of Lemma 4.3.

We define a translation function t as follows

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ)

t(Kiϕ) = Ki t(ϕ)

t(♦iϕ) = ♦i t(ϕ)

t(©ϕ) = ©t(ϕ)

t(ϕUψ) = t(ϕ)Ut(ψ)

For update free formulas ϕ,ψ , we define a function T as

t([ϕ!]ψ) := T ([t(ϕ)!]t(ψ))

where T is defined on [ϕ!]ψ for update-free formulas in the following

T ([ϕ!]p) = p

T ([ϕ!]¬ψ) = ¬T ([ϕ!]ψ)

T ([ϕ!](ψ ∧ χ)) = T ([ϕ!]ψ) ∧ T ([ϕ!]χ)

T ([ϕ!](ψ ∨ χ)) = T ([ϕ!]ψ) ∨ T ([ϕ!]χ)

T ([ϕ!]Kiψ) = Ki T ([ϕ!]ψ)

T ([ϕ!]©ψ) = ©T ([ϕ!]ψ)

T ([ϕ!](ψUχ)) = (T ([ϕ!]ψ))U (T ([ϕ!]χ))

T ([ϕ!]♦iψ) = (¬ϕ ∧ ♦i T ([ϕ!]ψ)) ∨ (♦i (ϕ ∧ T ([ϕ!]ψ))).
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It is a straight-forward procedural argument to see that t indeed reduces formulas
in the language of HBPL* to update-free formulas.

Let us prove it for the formula [ϕ!][ψ !]χ . By definition we have t([ϕ!][ψ !]χ) =
T ([t(ϕ)!]t([ψ !]χ)). By induction hypothesis, t(ϕ) and t([ψ !]χ) are update-free. Then,
T becomes applicable. By induction for T with the update-free formula t([ψ !]χ), it
follows that T ([t(ϕ)!]t([ψ !]χ)) is update-free.
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