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In this work, we use Parikh and Ramanujam’s history based temporal-epistemic models to reason
about various epistemic game theoretical issues. First, we introduce a modal operator to express
subjective preferences to history based models, and present an analysis of the Prisoners’ Dilemma
in this framework. Finally, we extend Aumann’s celebrated agree-to-disagree result to history based
models.

... you act, and you know why you act, but
you don’t know why you know that you
know what you do.

The Name of the Rose, Umberto Eco

1 Introduction

1.1 Motivation

History based structures, proposed by Parikh and Ramanujam [[16]], suggest a formal framework which
lies between process models, interpreted systems and propositional dynamic logics. They have been used
to model epistemic messages and communication between agents, deontic obligations and the relation
between obligations and knowledge [16} 14, [15]. Moreover, history based models are technically similar
to interpreted systems [7, [14]. Epistemic and temporal reasoning in history based models depend on a
sequence of events, called history.

In this work, we consider history based structures from a game theoretical point of view with some
applications. In order to achieve this, we first make history-based models more game-theory friendly
by introducing a preference modality. Then, we apply our extended formalism to a fundamental game,
which is the Prisoners’ Dilemma, and show how history based models can be helpful to compute the
equilibrium. The choice of prisoners’ dilemma is not arbitrary. Because in this game, the epistemology
of the agents play a central role and the way their knowledge is formalized bear some similarities to some
other formalisms of epistemic games. Building on this observation, we use history based game models
to present an iteration of Aumann’s well-known “agree-to-disagree” theorem.

The overall goal of this research agenda is to introduce more expressive formalism for the analysis
of various foundational game theoretical issues. These issues include security games, epistemic games
and how they depend on the history of the game and how we can read off strategies from such a model.
We achieve this by discussing these topics in a model where histories are taken as the basic elements of
the model and by introducing a modal preference relation.
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1.2 Basic Logical Structure

Different from Kripke models, history based models are constructed by using a given set of events and
agents. Events can be seen as actions or moves which vary over time and affect the knowledge of the
agents. In such a model, agents’ epistemic capacities differ from local and global perspectives. When
a history is considered as a sequence of events, it is important to tell apart which events were carried
out by which agents, and which agents can see which events, and how all this affects the knowledge and
preferences of the agents.

Similar attempts have been made to apply history based models to deontic and epistemic issues [15,
14]]. However, in that body of work, game theoretical reasoning was never clear or of prime importance
which left many interesting phenomena outside its boundaries. In this preliminary work, we take the first
step to formalize epistemic games with their histories and start from history based models. For this aim
of ours, we first introduce preferences. Let us proceed step by step in our formalism.

History based structures are constructed by using a fix set of events E and agents A. A finite set of
events is denoted as E*, and for each agent i, E; C E is the set of events which are “seen” or “accessible”
by the agent i. A finite sequence of events from E is denoted by lowercase /, whereas a possibly infinite
sequence of events is denoted by uppercase H. We call them both histories.

We denote the concatenation of finite history /4 with (possibly infinite) history H by hH. For a set
of events E, J7; denotes the set of all finite histories with events from E and 7 denotes the set of
all histories, finite and infinite, with events from E. By .77, we denote any set of histories. Given two
histories H,H’, H < H' denotes that H is a prefix of H’. We denote the length of finite # with len(k). For
a history H, H; denotes that H, < H with len(H;) =1.

We define global history as a sequence of events, finite or infinite, where a local history is the history
of a particular agent. For any set of histories .77, the set FinPre(#°) denotes the set of finite prefixes
of the histories in 7. A set of histories .77 is called a protocol if it is closed, under set inclusion, for
all prefixes. In other words, in order for a history to make sense, its prefixes should be included in the
model, and there should be no jumps.

Now we can discuss temporal and epistemic operators in this framework. Given an agent i and
a global history H, the agent i can only access some of H. For two histories H,H’, if the agent can
access to the same parts of H and H’, then H and H’ are indistinguishable for i. Then, a function
Ai : FinPre(H) — E7 is called a locality function for agent i and a global history H. Based on locality
functions, the epistemic indistinguishability ~; for agent i is defined between two histories H,H’ as
follows: If H~;H’, then A;(H) = A;(H").

The locality function as given above is rather general. For that reason, we impose some conditions
on it [[14]. First, we assume that agents’ clock is consistent with the global clock, that is all agents share
the same clock. Second, A;(H) is embeddable in H, that is the events in A;(H) appear in H in the same
order. In other words, “agents are not wrong on about the events that they witness” [ibid].

For obvious reasons, ~; is an equivalence relation. Thus, the epistemic logic of history based struc-
tures is the standard multi-agent epistemic logic S5,,.

Given a set P of propositional letters, the syntax of history based models can be given as follows in
the Backus - Naur form where p € Pand i € A.

o:=p|-0|oNe|Ko|O¢|oUp

The epistemic modality for agent i is K; and the operator () is the next-time modality. We call U the
until operator.
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A history based model M is given as a tuple M = {7 E;,... ,E,,A1,..., Ay, ¥} where ¥ is a valu-
ation function which is defined in the standard fashion as follows: V : FinPre(J¢) — (P).

History based models semantically evaluates formulas at history-time pairs. At history H and time ¢,
the satisfaction of a formula ¢ is denoted as H,¢ |= ¢, and defined inductively as follows.

Hibwp  iff HeV(p),
H,t 'ZM -Q iff H,t F’éM Q,

HitEyoANy iff HitbEy@and Hit =y v,

H,l':M O(p iff H,jt+1 ':M Q,

H ¢t ’:M Ko iff VH' € 5# and HtN,'Ht/ 1mphes H/,t ’:M Q,

H,t =y Uy  iff Jk>1 suchthat H k =y v and VI, 1 <1 < kimplies H,l Eup ¢.

The dual of the epistemic modality will be denoted with L; and defined in the usual way. The
expression M = ¢ denotes the truth of ¢ in a history based model M, independent from the current
history and time-stamp.

The axioms for history based models are given as follows.

e All tautologies of propositional logic, e O(p—=vy)—= (O — Qvy),
o Ki(p —vy)— (Kip = Kiy),
( )= ( ) « O=06-00.
* Ki¢ — ¢ NKiK;0,
* ~Ki¢p — Ki-K;o, * Uy < yV(oAO(eUY)).

The rules of inference are modus ponens, and normalization for all three modalities:

R R VT2 e Fo.. Q9.
s Fo.. FKo, e Fo—(yAQQ) .. Eo—(9Uy).

Additional axioms can be introduced to history based models to formalize variety of properties in-
cluding perfect recall and no learning [[14]]. It is also important to note that the above axiomatization does
not include any axioms that govern a possible interaction between the epistemic and temporal modali-
ties. The reason for this is the fact that the former quantifies over histories (up to a fixed ) whereas the
latter ranges over the time stamp only. However, as we argued earlier, further temporal and epistemic
conditions can be forced by introducing various interaction axioms.

History based models combine epistemic and temporal modalities in a complex way and they are
closely related to runs [[7]. Furthermore, histories and runs can be translated to each other effectively
[14]). However, it still remains an unexplored direction to use history based models for game theoretical
purposes. We will illustrate it in due time.

Now, from a modal logical point of view, the immediate question is how bisimulations can be defined
within the context of history based models where we focus on events/actions as opposed to possible
worlds/states and possess complex temporal modalities such as the until modality.

Definition 1.1. For history based models M, M’, a bisimulation > between M and M’ is a tuple <= (>
,b<1) where >igC M x M and a; C M? x M"? such that
Propositional base case:

o If H,txig H',¢, then H,t and H',¢ satisfy the same propositional variable,

Temporal forth case:
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o If H,t<iy H',t' and 7 < u, then there is u' in M’ such thatt’ < ', H,ut<io H',u’ and (H,1), (H,u) <
(1_1171,/)7 (H/,M/),
o If (H,t),(H,u)<y (H',t'"),(H',u’) and if there is v/ with #' <V < i/, then there exists v such that
t<v<uwuand H,v<o H',V,
Temporal back case:
e IfH t<g H ¢ and ¢’ <4/, then there is u in M such that r < u, H,uig H',u’ and (H,1), (H,u) <,
(H/,t/)’ (H/,M/),
o If (H,1),(H,u) >y (H',t"),(H',u’) and if there is v with ¢ < v < u, then there exists V' such that
<V <u and H,vi<o H',V,
Epistemic forth case:

o If H,t <9 H',t" and H;~;K}, then there is K’,I" in M’ such that K, [ ><g K, and H},~;K],,
Epistemic back case:

o If H 1>y H',t" and H),~;Ky, then there is Kl in M such that K, [ > K’,!" and H,;~;K],

In the above definition, the interval bisimulations we defined in the temporal cases are needed for the
until modality, as the until modality is essentially an interval process equivalence. This definition clarifies
how history based models can simulate state-based models or interpreted systems, and how different
histories can be identified to form bisumulations. Based on this definition, the following theorem follows
immediately.

Theorem 1.2. For history based models M,M’, if M <1 M’, then they satisfy the same formula.

Proof. For the epistemic case see [3]], for the temporal case see [[L1]. O

2 Adding Preferences

History based models provide sufficient tools to formalize simple epistemic games. If games are con-
sidered as formal representations of interactive situations in which agents make rational decisions, such
decisions then must rely on those agents’ subjective preferences. Moreover, these subjective preferences
may change depending on what stage of the game the players are in and how far ahead in the game
they have progressed. In short, preferences depend on the game history. This is the motivation behind
introducing subjective preferences into history based models.

For an agent i, and possibly infinite histories H, H’, the expression H <; H' denotes that “the agent i
(weakly) prefers H' to H”. The preference relation will be taken as a pre-order satisfying reflexivity and
transitivity [2} [10].

We can amend the syntax of the logic of history based models with the modal operator ¢;¢ which
expresses that there is a history which is at least as good as the current one and satisfies ¢ for agent i. We
specify the semantics of this new modality as follows.

H.t ):O,(p iff 3H'.H j,’H’ and H’,l‘ ):(p

The dual of the above modality is denoted by [J; with the following semantics: H,t |= ;¢ whenever
VH'.H <;H — H',t = ¢.

Notice that this formalism compares histories as opposed to propositions. For a history based model
M, the formula M |= ¢ — O;y denotes that the agent i prefers y to ¢. In other words, each ¢ has an
alternative history which is at least as good as the current one and satisfies y.

The additional axioms and rules of inference for the S4 preference modality can be given as follows.
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o ¢ — 00,
o 0;i0ip — 0i0,

The additional rule of inference for the preference modality is the expected one.

We call the logic of history based structures with preferences as HBPL after history based preference

logic. HBPL can be supplemented with various additional axioms to express some other interactive
epistemic, temporal and game theoretical properties. Here we consider a few.

Connectedness of Preferences The connectedness property for the preference relation suggests that
any two histories are comparable. Therefore, it can be formalized as VH,H'.H <; H'\V H' <; H. The
modal axiom that corresponds to it is the following axiom: (J;((J;¢ — ) vV 0;(;w — ¢). This renders
the frame with preference modality as a total pre-order.

Epistemic Perfect Recall The agents with perfect recall retain knowledge once they acquired it. The
standard axiom for this property is given as follows: K; O ¢ — (OK;¢. It is rather easy to show that this
axiom is valid in HBPL. Given an arbitrary history A and a time-stamp ¢, we start with assuming H,¢ |=
K; O ¢. Our aim is to show that OK;¢ holds at H,t. Now, by definition, VH'.(H~;H' — H';t = 9).
Unfolding the temporal modality gives VH'.(H~;H' — H',t + 1 |= ¢). Now, we can fold back, but this
time starting with the epistemic modality. By definition, we first obtain H,7 + 1 |= K;¢, which produces
H,t = OK:¢. Thus, K; O ¢ — QK¢ is valid in HBPL]]

Preferential Perfectness By preferential perfectness, we mean that agents do not change their prefer-
ences in time. Consider the scheme J; O ¢ — OU; . It is also easy to show that this scheme is valid in
HBPL, so we skip it.

Epistemic Rationality By a slight abuse of terminology we will call the axiom scheme ;L;¢ — L;(; ¢
as the Church-Rosser axiom. The frames of HBPL which satisfies the Church-Rosser Property enjoys

the following condition:
=i

Hl H/l
1T B ' i
H- 7" >K

If H~; H and H' <; H", then there exists a history K such that H <; K and H" ~; K.

Consider the dual axiom scheme K;[1;¢p — [;K;¢. This is valid in HBPL. Similar to above, consider
H,t = K;UJ;@. Then by definition, VH'.(H~;H — H',t = 00;¢). This reduces to VH',H"(H ~; H' A
H' <;H" — H"t = ¢). By the Church-Rosser Property, then there exists a history K such that H <; K
and H” ~; K. So, by definition, K,z = K;@. Thus, H,t = [J;K;@, which shows the validity of the axiom
scheme in question.

Various other combinations of the modalities, such as [;K; O ¢ — OU;K;¢ or K;L; O ¢ — OK;L@
remain valid in HBPL. Similarly, various commutativity properties of the modalities, such as K;K;@ <>
K;K; @, can be examined in order to shed light to epistemic interaction of the agents.

'However, as van der Meyden showed, the axiom K; O ¢ — (OK; is not sufficient to establish the completeness of frames
with respect to perfect recall [13,[12]. The additional axiom required for this task is a complicated one:

Kio1 AO(Kipr A—K;93) = —Ki=((Ki 1)U (Ki2)U—93)).
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3 Case Study: An Epistemic Analysis of the Prisoner’s Dilemma

Viewed as histories with imposed subjectives preferences, HBPL is helpful in formalizing epistemic
games. As an application, we consider how HBPL computes best responses in Prisoners’ Dilemma (PD,
for short).

(a) Extensive form representation

(b) Equivalence classes of histories

Figure 1: Prisoners’ Dilemma

Let us consider PD in its extensive normal form where the utility pair (us,up) denotes the utility of
the players A and B respectively. Epistemic indistinguishability of the states for player B is denoted by
the dashed line given in Figure [Ta] Based on the extensive normal form, we reproduce the epistemic
model of PD below where agents’ knowledge is represented by the equivalence classes in the standard
way in Figure [1b|[2]. In the history xy, the first event denotes Player A’s move while the second one
denotes Player B’s move. Also, due to the utilities associated with the players at the possible end states
of the game, we have cc <p cd and dc <p dd. Similarly, cc <4 dc and cd <4 dd. The HBPL model for
PD can easily be read off from Figures [Ta] and [Tb] hence skipped.

We define best response relation for agent i in a two-player game as follows where —i denotes the
players other than i.

BRi=~_NZ=;

By a slight abuse of notation, we will use the same notation to denote the intersection modality. Put
informally, in this context, best response for an agent is a move that is indistinguishable by the opponent
yet more preferable for the agent himself.

Now let us see how we can verify the best responses of the players. Recall that for both players, the
best response is defect (the move d). What follows is a direct computation of best responses for each
players based on the game history and the subjective preferences of the players. Since PD is a one-shot
game, we use a fixed-time stamp ¢.

We start with Player A.

cc,t = BRy since there is dc such that dc ~p cc and cc <4 dc

cd,r = BRsy since there is dd such that dd ~p cd and cd <4 dd

dc,t =BRsy since there is no compatible history with these properties.
The only alternative cc fails to bring a higher utility

dd,t =BR4 since there is no compatible history with these properties.
The only alternative cd fails to bring a higher utility
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Similarly for player B:

cc,t = BRg  since there is cd such that cd ~4 cc and cc <4 cd

dc,t = BRp since there is dd such that dd ~4 dc and dc <4 dd

cd,r =BRp since there is no compatible history with these properties.
The only alternative cc fails to bring a higher utility

dd,t =BRp since there is no compatible history with these properties.
The only alternative dc fails to bring a higher utility

Based on the above analysis, Nash equilibrium can be observed at dd which is the state where neither
of the agents can unilaterally benefit by diverging from. If A diverges, then the history cd is obtained
which is not preferable for him. Similarly, if B diverges, then the history dc is obtained which is not
preferable for him either. Thus, dd is the Nash equilibrium of PD.

It can be noticed that we have not discussed strategies in HBPL. Therefore, the Nash equilibrium in
HBPL is simply a game history formed if the players follow a particular equilibrium strategy constructed
with respect to their best responses. Therefore, the equilibrium is expressed in terms of a game history.

This is a model of prisoner’s dilemma in HBPL.

4 Case Study: Set Based Analysis of Histories and Decisions - An Agree-
to-Disagree Result

The above analysis of PD considered epistemic states of the game as sequences of moves, or histories.
However, there was an additional layer of formalization on top of the histories, which considered the
structure of histories and their relation to each other in the form of equivalence classes. We can now
develop this idea further, and relate it to a well-known and foundational result in epistemic game theory.

Aumann’s celebrated agree-to-disagree theorem is a mile-stone in epistemic game theory [[1]. Several
iteration of the agree-to-disagree result have been given in the literature [4]]. In this section, we take one
of such variations, which is due to Dov Samet, and apply it to history based models. Samet’s model
uses a non-probabilistic model together with a set algebra where the knowledge is formalized using a
set operator [17]. In that case, Aumann’s original statement of the theorem becomes a special case of
Samet’s generalized formalism.

Our application of HBPL to agree-to-disagree theorem serves two goals. First, it shows the versatility
of HBPL by considering sets of histories as equivalence classes. Second, it shows that it is possible to
introduce two different levels of complexity to epistemic games. The first level of complexity deals with
the game play and constructs a history which includes the moves of all players and the local knowledge
of players. The second level of complexity, on the other hand, provides a global view of the model by
forming equivalence classes of histories introducing additional structure. In HBPL, unlike Kripkean
models, we can read off the epistemics of agents from the histories directly. This is one of the major
advantages of using history based models.

However, notice that HBPL evaluates truth at time stamps. The truth of a formula depends both
on the history and where we are at the history. Nevertheless, the epistemic modality and the preference
modality in HBPL does not quantify over the temporal parameter. For that reasons, in what follows we
assume that the time stamp is fixed and the same for all agents, for simplicity.

Let us now start with defining some standard epistemic operators following [[17].

Definition 4.1. For a given set of agents A and a formula ¢, we define E5 ¢ which reads “everyone in A
knows ¢”. Formally, EA ¢ = \;cx Ki@.
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We define the common knowledge operator Ca ¢ which reads “¢ is common knowledge among A”
as follows
CAQ@ =EAQAEXQA-—-A...EXQA...

where Ell = EA@ and Eﬁ“ Q= EAEj;q), fork > 1.

The epistemic indistinguishability relation ~; for agent i makes it possible to redefine history based
models as epistemic set models in a way that we can compare agents’ knowledge relative to a given
protocol [17]. In order to achieve this, we define a set valued function which takes a set and returns
a partition in that set that belongs to the agent. Given a protocol ., we define &; : 27 +— 27/ For
simplicity, we will consider sets of finite histories, and denote the sets of histories with bold letters such
as h,h’ etc. In this model, for each agent, there exists a partitioning of the given protocol .77 .

Now, in a given model, let 7; denote the agent i’s partitioning of the protocol 7. That is, for each i,
there exists equivalence classes of histories in J#. Similarly, m;(h) denotes the partition for agent i that
contains /. In other words, for an agent at history £, the histories in 7;(h) are indistinguishable.

Now, we define k;(h) = {h: m;(h) C h}. Simply put, for a set of histories h, the set x;(h) includes
all the histories & whose partitions are contained in h. The operator k; is a set valued operator which
will express agent’s knowledge. In order to achieve this, we stipulate that x; satisfies the following three
properties, for given sets of histories h,h’ [[7].

1. Kl‘(hﬁh,) = Ki(h) N Ki(h/)

2. x;(h) Ch

3. —Ki(h) = Ki(—Kl’(h))
where — denotes the set theoretical complement. The above three property makes x; an epistemic oper-
ator where the first condition corresponds to normality, the second one to veridicality and the last one to
introspection in the traditional sense. Similarly, a common knowledge operator ¢ can be defined for sets
of histories to express the common knowledge modality Cy.

Extending the preference relation in HBPL, it is possible to compare agents’ knowledge relative to
each other, given a set of histories.

Definition 4.2. Define the set of histories [j > i]”* in which agent j is at least as knowledgeable as agent
i with respect to a given set of protocols 7Z as follows.

j>i7 = (| —x(h)Uk;h)

he2t

By a slight abuse of notation, we will denote the proposition whose extension is the set [j > i]% by
the same symbol.

Since our epistemic model is based on equivalence classes and partitions, it is possible to compare
agents’ knowledge based on their partitions. The following lemma expresses the fact that the finer the
partitions, the more the epistemic knowledge.

Lemma 4.3 ([17]). h € [j > i iff x;(h) C m(h).

Proof. Leth € [j > i]””. For h = m;(h), and by the above definition, we have & € —k;(7; (1)) U k(7 (h)).
By definition, ;(7;(h)) = m;(h) and also h € m;(h). Thus, h € k;(m;(h)). Then, by definition of «,
ﬂj(h) C ﬂl(h)

For the converse direction, let k, 7;(h) C m;(h). Suppose for some set of histories h, we have & €
ki(m;(h)). Then, by definition, ;() C h. By the initial assumption, we also have 7;(%) C h which means
that i € k;(m;(h)). Thus, for each h € 27, h € —k;(h) Uk;(h). Hence, h € [j > i]” . O
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Another interesting lemma suggested by Samet shows how the comparison ordering of agents’
knowledge and epistemic partitions relate to each other. Let us prove it for HBPL.

Lemma 4.4 ([I7)). h € x([j > i]) iff m(h) = Up e 7(H).

Proof. The proof directly follows from the definitions.
h € ;[j > i] amounts to m;(h) C [j > i] by definition. By the first lemma, this statement holds if and
only if for each 7’ € m;(h) we have 7;(h’) C m;(h). This is equivalent to 7;(h) = Uy eg,n) 7 (H')- O

Next, we define a decision function §; : 5# — D for a protocol .7, agent i and any set of decisions
D. The vector 6 = (01, ...,0,) is called a decision profile for n agents. In this context, we consider D as
any set of decisions, not necessarily probabilistic or propositional. Now, for a decision d € D, we define
the proposition [§; = d]” with the following set as its extension.

(8 =d)” ={H e . :8(H)=dforall H € ;#}

Similarly, we will use [§; = d]jf to denote both the set and the proposition, if no confusion arises
from the context. If obvious, we will drop the superscript.

We assume each agent knows his decision [17]. In our notation, this amounts to the following
statement [8; = d]” C x;([8; = d]”*). In other words, agents agree with those agents who know better.
Let us put it formally and more carefully as follows.

Definition 4.5. «;([j > |7 N[§; =d]”") C [§ =d]”.

Sure Thing Principle suggests that if an agent j is at least as knowledgable as another agent i, and if
J’s decision is d, then i’s decision is also d.

If the knowledge comparison is an intuitive order, this means that there can be postulated some agents
that know less than all the other agents. Now, an agent i is called an epistemic dummy if all the agents are
at least as knowledgeable as i. Dummy agents can be introduced to decision making process if they do
not upset the sure thing principle. The following notion incorporates dummy agents into the sure thing
principle.

Definition 4.6. A decision profile d in a model with a protocol .7# with n agents is expandable if for any
additional epistemic dummy i, there exists a decision profile d’ which satisfies the sure thing principle.

It is important to stipulate that for an expandable decision profile d and dummy agent i, d and d’
agree on the decisions of agents who are not dummies. Expandable decision profiles play an important
role for the following theorem, which we adopt from [[17].

Theorem 4.7. If 6 is an expandable decision profile in a model with a protocol 7€ with n agents, then
for any decisions d\,...,d, in D which are not identical, C(\;<,|8; = d;]”*) is nowhere satisfiable, in
other words ¢(;<,[8 = d;]”*) = 0.

Proof. First, we will construct an epistemic dummy agent. Call him n+ 1. Now, define 7, as the finest
partition which is coarser than any of the partitions 7; for 1 < i < n. Then, the epistemic set operator
K,+1 based on the partition 7, is the common knowledge operator Ca [7]].

Also K,11([j > n+1]) = S as K,4+1 is common knowledge operator and [j > n+ 1] = . for each
agent j for 1 < j <n. This shows that n 41 is an epistemic dummy.

Now, for an expandable decision profile d, there is 0,41 such that (8y,...,0,41) satisfies the sure
thing principle.

We will now prove the contrapositive. For this, let & € ¢([);[0; = di]). We showed that ;. is the
common knowledge operator. So, let i € &,+1(;[8 = di]).
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Since K operator satisfies the property that k(hNh') = k(h) Nk (h’), we have h € N, &,+1 ([6; = di]).
Therefore, for each j, h € K,41([0; = d}]).

By definition, 7, is coarser than 7; for any j, and 7,+1(h) = Upex,,, () %j(A'). By the second
lemma, we observe that & € K,.1([j > i]).

Now, we have & € k,41([6; = d;]) and h € K,11([j > i]), so that we can apply the sure thing principle
to obtain & € [8,+1 = d,] for each j. Therefore, all the decisions d; are identical to 8, (h). This is also
why we need an epistemic dummy agent.

Thus, if the common knowledge is not an empty set, the decisions of the agents coincide.

This proves the theorem. O

So far, we have adopted Aumann’s well-known theorem to history based structures via Samet’s
formalism [1, [17]. What is more interesting is, via our proof, the result can be extended to runs and
function based knowledge structures, and expands the domain of applicability of Aumann’s theorem
(5,18l 6.

Now, it is worth mentioning the potential future applications of above results. First, Theorem
provides some good handles for systems security policies. In systems’ security, it can obviously be seen
that attacker’s and defender’s decisions cannot be the same for a successful attack. Also, it is not enough
that they will have different decisions, those decisions cannot be commonly known among them. The
theorem specifies under which conditions, agents’ decisions which are not identical cannot be common
knowledge. If they are common knowledge, then some agents cannot agree to disagree [1].

Also, it is noteworthy that the decision set D above is given arbitrarily. Therefore, it seems possible
to choose a probability measure to precise the decisions of the agents in a way close to the original set
up of the theorem by Aumann [[1]]. Such a set-up would facilitate the introduction of probabilistic issues
and mixed strategies into HBPL, which we leave to future work.

Finally, set based approaches to histories relate HBPL to topological spaces where agents’ indistin-
guishable histories may form an open set. In such a formalization, topological transformations and paths
might help us to transform histories in a continuous and knowledge-preserving fashion.

5 Conclusion

History based models provide a natural formalism for epistemic logic. In this work, we extended the
standard framework by introducing modal preferences in order to reason about subjective preferences
and epistemic games, and made a connection between logic and games via history based models. This
opens up a broad spectrum of theoretical and applied fields for future work including process algebras,
preference logics, deontological games and topologies.

History based models also seem to provide a richer understanding for agents’ rationality by intro-
ducing various tools for explicate agents’ decision and preferences based on the progress of the game,
preferences and the time. This potential can easily be extended to a broader and utilitarian analysis of
history based games, which we leave for future work.

In this preliminary work, apart from introducing a conceptual development, we argued that HBPL
fits rather well within the current research on epistemic game theory, modal logic and logic of games,
and provides a new and broad framework.

Acknowledgement The epigraph is taken from [9]].
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