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1 Introduction

1.1 Motivation

Bisimulations and van Benthem’s celebrated related theorem provide a direct
insight how truth preserving operations in modal logics work. Apart from bisim-
ulations, there are several other operations in basic modal logic that preserve
the truth such as (Blackburn et al., 2001).

However, there is a problem. Given a modal model, and several bisimilar
copies of it, there is no method to compare or measure the differences between
bisimilar models apart from the basic model theoretical methods (i.e. if they are
submodels of each other, for instance). A rather negative slogan for this issue is
the following: Modal language cannot distinguish bisimilar models.

Since the modal language cannot count or measure, several extensions of
the language has been proposed to tackle this issue such as hybrid logics and
majority logics (Blackburn, 2000; Fine, 1972). However, such extensions are
language based, and introduce a non-natural and sometimes counter-intuitive
operators to the language, and are often criticized as being ad-hoc.

In this work, we focus on the truth preserving operations rather than extend-
ing the modal language. In other words, we will ask the following question: Is
there a truth preserving natural modal operation that can also distinguish the
models it generates, and even compares them? We argue that such an operation
exists, and the answer to that question is positive.

However, to conceptualize our concerns and questions, we need to be care-
ful at choosing the correct modal logical framework. Kripkean models, in this
respect, are criticized as they are overly simplistic and can overshadow some
mathematical properties that can be apparent in some other modal models.
Therefore, in this paper, we will concentrate on topological models for modal
logics. First, note that topological models historically precede Kripke models,
and are mathematically more complex allowing us to express variety of ideas
within modal logic. Therefore, they can provide us with much stronger and
richer structure of which we can take advantage. In this paper, we utilize a
rather elementary concept from topology. We first introduce homeomorphisms,



and then homotopies to classical and non-classical modal logical frameworks,
and show the immediate invariance results. On the other hand, from an appli-
cation oriented point of view, we also have some applications to illustrate how
our constructions can be useful.

1.2 Topological Semantics and Paraconsistency

The history of the topological semantics of (modal) logics can be traced back to
early 1920s making it the first semantics for variety of modal logics (Goldblatt,
2006). The major revival of the topological semantics of modal logics and its
connections with algebras, however, is due to McKinsey and Tarski (McKinsey &
Tarski, 1946; McKinsey & Tarski, 1944). In this section, we will briefly mention
the basics of topological semantics in order to be able build our future construc-
tions. We will give two equivalent (and dual) definitions of topological spaces
here for our purposes.

Definition 1.1. The structure (S, 7) is called a topological space if it satisfies
the following conditions.

1. Sertander
2. 7 is closed under arbitrary unions and finite intersections

Definition 1.2. The structure (S, o) is called a topological space if it satisfies
the following conditions.

1. SeoandPeo
2. o is closed under finite unions and arbitrary intersections

Collections 7 and o are called topologies. The elements of 7 are called open
sets whereas the elements of ¢ are called closed sets. Therefore, a set is open if
its complement in the same topology is a closed set and vice versa. A function
is called continuous if the inverse image of an open (respectively, closed) set
is open (respectively, closed), and a function is called open if the image of an
open (respectively, closed) set is open (respectively, closed). Moreover, two
topological spaces are called homeomorphic if there is a continuous bijection
from one to the other with a continuous inverse. Moreover, two continuous
functions are called homotopic if there is a continuous deformation between the
two. Homotopy is then an equivalence relation and, it gives rise to homotopy
groups which is a foundational subject in algebraic topology.

An easy and immediate semantics of paraconsistent/paracomplete logics can
be given by using topologies. For this reason, it is helpful to remember some
basics of paraconsistency.

First, note that deductive explosion describes the situation where any for-
mula can be deduced from an inconsistent set of formulae, i.e. for all formulae
v and v, we have {p, 7} F ¢, where |- denotes logical consequence relation. In
this respect, both “classical” and intuitionistic logics are known to be explosive.



Paraconsistent logic, on the other hand, is the umbrella term for logical systems
where the logical consequence relation | is not explosive (Priest, 2002). A vari-
ety of philosophical and logical objections can be raised against paraconsistency,
and almost all of these objections can be defended in a rigorous fashion. We will
not here be concerned about the philosophical implications of it, yet we refer
the reader to the following for a comprehensive defense of paraconsistency with
a variety of well-structured applications (Priest, 1998).

Use of topological semantics for paraconsistent logics is not new. To our
knowledge, the earliest work discussing the connection between inconsistency
and topology goes back to Goodman (Goodman, 1981)!. In his paper, Good-
man discussed “pseudo-complements” in a lattice theoretical setting and called
the topological system he obtains “anti-intuitionistic logic”. In a recent work,
Priest discussed the dual of the intuitionistic negation operator and considered
that operator in topological framework (Priest, 2009). Similarly, Mortensen
discussed topological separation principles from a paraconsistent and paracom-
plete point of view and investigated the theories in such spaces (Mortensen,
2000). Similar approaches from a modal perspective was discussed by Béziau,
too (Béziau, 2005).

In our setting, we denote set of propositional variables with P. We use the
language of propositional modal logic with the modality (J, and we will define
the dual ¢ in the usual sense, and construct the language of the basic unimodal
logic recursively in the standard fashion.

In topological semantics, the modal operator for necessitation corresponds
to the topological interior operator Int where Int(O) is the largest open set con-
tained in O. Furthermore, one can dually associate the topological closure op-
erator Clo with the possibility modal operator ¢ where the closure Clo(O) of a
given set O is the smallest closed set that contains O.

Before connecting topology and modal logic, let us set a piece of notation
and terminology. The extension, i.e. the points at which the formula is satisfied,
of a formula ¢ in the model M will be denoted as [p]*. We omit the superscript
if the model we are working with is obvious. Moreover, by a theory, we mean a
deductively closed set of formulae.

The extensions of Boolean cases are obvious. However, the extension of a
modal formula (i is then associated with an open set in the topological system.
Thus, we have [O¢] = Int([p]). Similarly, we put [0¢] = Clo([¢]). This means
that in the basic setting, topological entities such as open or closed sets appear
only with modalities.

However, we can take one step further and suggest that extension of any
propositional variable be an open set (Mortensen, 2000; Mints, 2000). In
that setting, conjunction and disjunction works fine for finite intersections and
unions. Nevertheless, the negation can be difficult as the complement of an
open set is not generally an open set, thus may not be the extension of a formula
in the language. For this reason, we need to use a new negation symbol ~ that

IThanks to Chris Mortensen for this remark. Even if Goodman’s paper appeared in 1981, the
work had been carried out around 1978. In his paper, Goodman indicated that the results were
based on an early that appeared in 1978 only as an abstract.



returns the open complement (interior of the complement) of a given set. A sim-
ilar idea can also be applied to closed sets where we assume that the extension
of any propositional variable will be a closed set. In order to be able to avoid a
similar problem with the negation, we stipulate yet another negation operator
which returns the closed complement (closure of the complement) of a given
set. In this setting, we use the symbol ~ that returns the closed complement of
a given set. Under these assumptions and recalling Definitions 1.1 & 1.2, it is
easy to observe the following (Mortensen, 2000).

¢ In the topology of open sets 7, any theory that includes the theory of the
propositions that are true at the boundary is incomplete.

e In the topology of closed sets o, any theory that includes the boundary
points will be inconsistent.

An immediate observation yields that since extensions of all formulae in
o (respectively in 7) are closed (respectively, open), the topologies which are
obtained in both paraconsistent (and paracomplete) logics are discrete. We al-
ready made the following simple connection (Baskent, n.d.). For a given model
M, let | M| denote the size of M’s carrier set.

Proposition 1.3. Let M; and M be paraconsistent and paracomplete topologi-
cal models respectively. If |My| = |Mx|, then there is a homeomorphism from a
paraconsistent topological model to the paracomplete one, and vice versa.

2 Homotopies

Let us clarify an important point. We stipulate that the extension of any formula
is closed to obtain a paraconsistent system, and stipulate that to be open to
obtain a paracomplete set. In other words, we do not mix such systems. On
the other hand, note that in the classical case, open or closed sets appear only
under the presence of modal operators, and they may appear together.

Now, in this section, we will start off with the easier case and consider para-
consistent topological spaces. Second, we will extend our results to classical
case.

2.1 Paraconsistent Case

A recent research program that considers topological modal logics with contin-
uous functions were discussed in an early work (Artemov et al., 1997; Kremer &
Mints, 2005). An immediate theorem, which was stated and proved in variety
of different work, would also work for paraconsistent logics (Kremer & Mints,
2005). Now, let us take two closed set topologies o and ¢’ on a given set S and
a homeomorphism f : (S,0) — (S,0’). Akin to a previous theorem of Kremer
and Mints, we have a simple way to associate the respective valuations between
two models M and M’ which respectively depend on ¢ and ¢’ so that we can



have a truth preservation result. Therefore, define V'(p) = f(V(p)). Then, we
have M = ¢ iff M’ = o.

Theorem 2.1. Let M = (S,0,V) and M’ = (S,0',V') be two paraconsistent
topological models with a homeomorphism f from (S, o) to (S, c’). Define V' (p) =
f(V(p)). Let w € S and w' = f(w), then for all p, we have M,w = ¢ iff
M w' = @ for all .

Proof. The proof is by induction on the complexity of the formulae. See (Baskent,
n.d.) for the proof in non-classical case. [ |

Note that the above theorem also works in paracomplete topological models,
and we leave the details to the reader.

Now, assuming that f is a homeomorphism may seem a bit strong. We can
then separate it into two chunks. One direction of the biconditional can be
satisfied by continuity whereas the other direction is satisfied by the openness
of f.

Corollary 2.2. Let M = (S,0,V) and M' = (S,0’, V') be two paraconsistent
topological models with a continuous f from (S,o) to (S,c’). Define V'(p) =
f(V(p)). Then M, w |= ¢ implies M',w' |= ¢ for all p where v’ = f(w).

Corollary 2.3. Let M = (S,0,V) and M’ = (S,0’,V') be two paraconsistent
topological models with an open f from (S, o) to (S,c’). Define V'(p) = f(V (p)).
Then M’ w' |= ¢ implies M, w = ¢ for all ¢ where w' = f(w).

Proofs of both corollaries depend on the fact that Clo operator commutes
with continuous functions in one direction, and it commutes with open func-
tions in the other direction. Furthermore, similar corollaries can be given for
paracomplete frameworks as the Int operator also commutes in one direction
under similar assumptions, and we leave it to the reader as well.

Furthermore, any topological operator that commutes with continuous, open
and homeomorphic functions will reflect the same idea and preserve the truth?.
Therefore, these results can easily be generalized.

We can now take one step further to discuss homotopies in paraconsistent
topological modal models. To best of our knowledge, homotopies were first
introduced to (non-classical) modal logic in (Baskent, n.d.). Now, recall that a
homotopy is a description of how two continuous function from a topological
space to another can be deformed to each other. We can now state the formal
definition.

Definition 2.4. Let S and S’ be two topological spaces with continuous func-
tions f, f' : S — S’. A homotopy between f and f’ is a continuous function
H:S x[0,1] — 5" such thatif s € S, then H(s,0) = f(s) and H(s,1) = g(s).

In other words, a homotopy between f and f’ is a family of continuous
functions H, : S — S’ such that for ¢ € [0, 1] we have Hy = f and H; = g and

2Thanks to Chris Mortensen for pointing this out.



the map ¢ — H; is continuous from [0, 1] to the space of all continuous functions
from S to S’. Notice that homotopy relation is an equivalence relation. Thus, if
f and f’ are homotopic, we denote it with f ~ f’. We will now use homotopies
to obtain a generalization of Theorem 2.1.

My
fr
M H
fi
M,

Figure 1: Homotopic Models

Definition 2.5. Given a model M = (S,0,V), we call the family of models
{M; = (S: C S, 04, Vi) }eejo,1) generated by M and homotopic functions homo-
topic models. In the generation, we put V; = f(V).

Theorem 2.6. Given two topological paraconsistent models M = (S,0,V) and
M = (8',0', V') with two continuous functions f, ' : S — S’ both of which
respect the valuation: V' = f(V)) = f/(V). If there is a homotopy H between f
and ', then homotopic models satisfy the same formulae.

Proof. To make the proof a bit more readable, note that the object whose names
have a prime’, are in the range of the functions.

To make the proof go easily, we will assume that continuous functions are
onto. If not, we can easily rearrange the range in such a way that it will be.

Let M, = (S},04,V;) and My = (S},,0u,Vy) be homotopic models with
continuous f;, fy : S — S’. Observe that M; = (S, 0+, f:(V)), or equally
M, = (S}, 0¢, H(V)) for homotopy H.

Take a point s; such that f;(s) for some s € S.

Then, take (S, o¢, H:(V)), fi(s) = ¢ for arbitrary ¢. Since, H is continuous
on ¢ by some h, and by Corollary 2.2, we observe My = (Sy, 04, Hy (V)), s |=
. In this case s, exists as H; is continuos on ¢t and sy = h(f(s)) = h(sy).
Therefore, M; = ¢ implies My = .

Notice that in this case, we did not need to present a proof on the complexity
of ¢. The reason for that is the fact that the extension of each formula is a closed
set (since we are in a paraconsistent setting). | |

Corollary 2.7. M = ¢ implies M, |= ¢, but not the other way around.

Corollary 2.8. In Theorem 2.6, if we take the cases for t = 0 and t = 1, we obtain
Corollary 2.2.



Notice that we have discussed the truth in the image sets that are obtained
under f, f', f¢,.... Nevertheless, the converse can also be true, once the con-
tinuous functions have continuous inverses: this is exactly what is guaranteed
by homeomorphisms. The corresponding notion at the level of homotopies is
an isotopy. An isotopy is a continuous transformation between homeomorphic
functions. Thus, we have the following.

Theorem 2.9. Given two topological paraconsistent models M = (S, o, V) and
M' = (8,0’ V") with two homeomorphism f, f' : S — S’ both of which respect
the valuation: V' = f(V) = f'(V). If there is an isotopy H between f and f,
then, for all ¢, we have

My Eoiff M Eoiff M =
Proof. Immediate, thus left to the reader. |

What makes the non-classical case easy is the fact that the extension of each
formula is an open or a closed set. Furthermore, a similar theorem can be stated
for paracomplete cases with a similar proof.

Theorem 2.10. Given two topological paracomplete models M = (S,o,V) and
M’ = (8',0¢', V') with two continuous functions f,f' : S — S’ both of which
respect the valuation: V' = f(V)) = f/(V). If there is a homotopy H between f
and f, then homotopic models satisfy the same formulae.

2.2 Classical Case

The reason why homotopies work nicely in non-classical cases is immediate:
because we stipulate that the extension of propositions to be open (or dually
closed) sets. This is a strong assumption.

In the topological semantics of basic modal logic, extensions of only modal
formulae are taken to be open (or closed). Can we then have results similar to
those we had in non-classical case? This is the problem we are going to address
in this section.

Let N = (T,n,V) and N’ = (T",n', V') be classical topological modal mod-
els. Define a homotopy H : T x [0,1] — T’. Therefore, as before, for each
t € [0,1], we obtain models N; = (T}, nt, V4).

Theorem 2.11. Given two classical topological modal models N = (T, n,V') and
N’ = (T, 7/, V') with two continuous functions f, ' : T — T’ both of which
respect the valuation: V' = f(V) = f(V'). If there is a homotopy H between f
and f', then homotopic models satisfy the same formula.

Proof Let two classical topological modal models N = (T,n,V) and N’ =
(T",n', V') with two continuous functions g,¢’ : T — T’ both of which re-
spect the valuation: V' = f(V) = f(V’) be given. Let H be a homotopy
H : T x]0,1] — T'. We will show that homotopic models satisfy the same
formula.



Take two homotopic models N; and Ny for ¢,¢' € [0, 1]. Let fi(w;) € T; be a
point in N; where f; : T — T;. Consider NV, f:(w:) | ¢. We will show that for
some fy(wy ) € Ty, we will have Ny, fy(wy) = .

Proof is by induction on the complexity of (. First, let ¢ = p for a propo-
sitional variable p. Then, let Ny, f;(w¢) | p. By using H, we can rewrite as
Ny, H(wy, t) |= p. Therefore, H(wy,t) € Vi(p). Since H is continuous on ¢, we
have a continuous function from i : ¢t — ¢'. Now, since V; = f(V) we observe
H(w,t) € fi(V(p)) which is equivalent to say H(w:,t) € H(V(p),t). We can
compose both sides with i to get H(wy,t') € H(V (p),t') for some wy € T. In
short, we obtain Ny, fu (wy) = p.

Note that since H is a homotopy, the function ¢ : ¢ — ¢’ exists and is con-
tinuous. Similarly, another function j : ¢ — ¢ exists and is continuous, and j is
needed to prove the other direction. The cases for Boolean ¢ is similar and thus
left to the reader.

Let us now consider the modal case ¢ = (v for some . Now, let Ny, fi(wy) E
0. Thus, fi(w:) € Int([1)]) where [¢)] denotes the extension of . Since f; is
continuous the inverse image of an open set is open, thus f; *(Int([+/])) is open.
For the previously constructed i, we observe i~ o (f; ' (Int([)]))) is also open as
f+ and ¢ are both continuous. Thus, the inverse image of Int([¢]) is open under
fr. Therefore, by the similar reasoning, H (w,t') € Int([¢)]) for some wy in the
neighborhood. Thus, Ny, fi (wy) E Ou.

The reverse direction of the proof from Ny to N; is similar, and this con-
cludes the proof. [ |

In conclusion, under a suitable valuation, isotopic models are truth invariant
both in classical and non-classical cases that we have investigated.

3 A Modal Logical Application

Consider the following two bisimilar Kripke models M and M’. Assume that
w,w’ and u,v’,y" and v,v’, 2’ do satisfy the same propositional letters. Then it
is easy to see that w and w’ are bisimilar, and therefore satisfy the same modal
formulae.

We can still pose a conceptual question about the relation between M and
M'. Even if these two models are bisimilar, they are different models. Moreover,
it is plausible to contract M’ to M in a validity preserving fashion. Therefore, we
may need to transform one model to a bisimilar model of it. Furthermore, given
a model, we may need to measure the level of change from the fixed model to
another model which is bisimilar to the given one.

Especially, in epistemic logic, such concerns do make sense. Given an epis-
temic situation, we can model it upto bisimulation. In other words, from an
agent’s perspective, bisimilar models are indistinguishable. But, from a model
theoretical perspective, they are distinguishable. Therefore, there can be sev-
eral modal logical ways to model the given epistemic situation. We will now



Figure 2: Two Bisimular Models

define how these models are related and different from each other by using the
constructions we have presented earlier.

Before proceeding further, let us give the definition of topological bisimula-
tions (Aiello & van Benthem, 2002).

Definition 3.1. Let M = (S, 0,v) and M’ = (S’,0’,v') be two topological mod-
els. A topo-bisimulation is a nonempty relation 2C S x S’ such that if s 2 &/,
then we have the following:

1. BASE CONDITION
s € v(p) if and only if s € v/(p) for any propositional variable p.

2. FORTH CONDITION

s € U € o implies that there exists U’ € ¢’ such that ' € U’ and for all
t' € U’ there exists t € U with t = ¢/

3. BACK CONDITION s’ € U’ € ¢’ implies that there exists U € o such that
s € U and for all ¢t € U there exists ¢ € U’ witht 2 ¢

We can take one step further and define a homoemorphism that respect
bisimulations. Let M = (S,0,v) and M’ = (S’,¢’,v’) be two topo-bisimular
models. If there is a homoemorphism f from (S, o) to (S,o) that respect the
valuation, we call M and M homeo-topo-bisimilar models. We give the precise
definition as follows.

Definition 3.2. Let M = (S, 0,v) and M’ = (S’,0’,v) be two topological mod-
els. A homeo-topo-bisimulation is a nonempty relation =;C S x 5" based on
a homeomorphism f from S into S’ such that if s =2; s/, then we have the
following:

1. BASE CONDITION
s € v(p) if and only if s € v/(p) for any propositional variable p.



2. FORTH CONDITION

s € U € o implies that there exists f(U) € ¢’ such that s’ € f(U) and for
all ¢’ € f(U) there exists t € U with ¢t = t/

3. BACK CONDITION s’ € f(U) € o' implies that there exists U € o such
that s € U and for all t € U there exists t’ € f(U) with ¢t = ¢/

Based on this definition, we immediately observe the following.
Theorem 3.3. Homeo-topo-bisimulation preserve the validity.

Proof. The proof is an induction on the complexity of the formulae and thus left
to the reader. |

Notice that we can define more than one homeomorphism between topo-
bisimilar models.

Now, we can discuss the homotopy of homeo-topo-bisimilar models. What
we aim is the following. Given a topological model (either classical, intuition-
istic or paraconsistent), we will construct two homeomorphic image of it re-
specting homeo-topo-bisimulation where these two homeomorphisms are ho-
motopic. Then, by using homotopy, we will measure the level of change of the
intermediate homeomorphic models with respect to these two functions.

Let M be a given topological model. Construct M; and M, as the home-
omorphic image of M respecting the valuation where f and g are homeomor-
phism. For simplicity, assume that M =; M; and M =, M,. Now, if f and ¢
are homotopic, then we have functions &, for x continuous on [0, 1] with hy = f
and hy = g.

Therefore, given x € [0, 1] the model M, will be obtained by applying h,. to
M respecting the valuation. Hence, My = M and M, = M,. Therefore, given
M, the distance of any homeo-topo-bisimilar model M, to M will be z, and it
will be the measure of non-modal change in the model. In other words, even if
M =,y M., we will say M and M, are z-different than each other.

The procedure we described offers a well-defined method of indexing the
homeo-topo-bisimular models. But, indexing is not random. It is continuously
on the closed unit interval.

Note that invariance results are usually used to prove undefinability results
in modal logic (Blackburn et al., 2001). For example, in order to show irreflex-
ivity is not modally definable, one needs to come up with two bisimilar models
- one is irreflexive, the other is not.

Homeo-topo-bisimulations can also be used to show some topological prop-
erties are not modally definable. For instance, in this respect, dimensions of
spaces is not modally definable in topological modal logic. Similarly, as trefoil
and circle are homeomorphic, knots are also not definable.
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