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1 Introduction and Motivation

The traditional necessity and possibility operators of modal logic provide us with
a direct insight about how modalities work in various frameworks. Supported
with the simple-to-use Kripke semantics and its intuitive proof theory, such
modalities have led to a variety of mathematical and philosophical developments
in the field. Nevertheless, from a mathematical point of view, it is possible to put
these two modalities together in a certain way to create a single modal operator,
and obtain an equi-expressible language as the standard propositional modal
logic.

In this paper, we discuss such a reformulation of the syntax of propositional
unimodal modal logic with some further advancement and applications. Our fo-
cus will be the nabla modality which was introduced by Larry Moss for coalge-
braic purposes [11]. Our goal here is to present several results on nabla modality
spanning various fields in epistemic logic including epistemic entrenchment, lan-
guage splitting and public announcements, and along the way we will present
various complexity results.

Similar observations on the connection between new syntactical elements and
their semantical richness has been undertaken in other epistemic logics which
relate the current work to a broader framework. The dichotomy between two
epistemic languages renders itself rather an interesting research area when ba-
sic epistemic logic (EL) and public announcement logic (PAL) are considered.
PAL has one additional operator called the public announcement operator. Nev-
ertheless, it turns out that PAL and EL are equi-expressible: every PAL formula
can be reduced to an EL formula. Yet, PAL provides us with a more direct in-
sight about dynamic epistemology of multi-agent systems in an economical and
succinct fashion [16,9].

Our contribution in this paper is as follows. We take the nabla modality as our
basic modality and investigate it in several epistemic frameworks. Starting from
the complexity issues raised by the nabla modality, we discuss various epistemic
issues including epistemic entrenchment, where some coalgebraic properties come
in handy. Then, we consider a very interesting syntactic interpolation result of
Parikh, and analyze it within this new language. Next, we show the completeness
of a dynamic epistemic logic that uses the nabla operator as its basic “epistemic”
operator. Finally, we consider some issues regarding the persistence of sets of
formulas with the nabla modality.



Related Literature Larry Moss introduced the nabla modality for coalgebraic
purposes [11]. A large body of work focused on coalgebraic and category theo-
retical aspects of the nabla modality, and within that framework Gentzen style
proofs, distribution properties, connections to algebras were investigated in de-
tail [4,13,17]. Nabla modality has also been discussed within modal logic. Moss
used cover sets to give weak completeness and decidability results of standard
systems of modal logics [12]. French, Pinchinat and van Ditmarsch used nabla
modality in their event logic [5]. Our work attempts to fill the gap between the
coalgebraic treatments of this new syntactic element and applied/classical modal
logic.

2 Basics

Different from the standard modal operators, the nabla modality applies to set of
formulas which can be empty, infinite or inconsistent. In this work, for simplicity
reasons, we restrict ourselves to finite sets of formulas.

The definition of the nabla modality is given as follows.

Vo= (/\ ¢2) A (O\/ )

where 49 for a set of formulas @ is an abbreviation for the set {Op : ¢ € }. We
call V nabla or cover modality interchangeably depending on the context. The
set @ is called the cover set. We denote the standard modal and propositional
languages as L0 and L, respectively. For a set P of countable propositional
variables, the syntax of the modal language we consider is given as follows.

plT|-p|lene| VP

where T is the truth constant, and p € P. We take V, — and < as shorthands
in the usual way. We call this language Lv.

The semantics of the nabla modality in Kripke structures is straightforward.
If M = (W,R,V) is a model where W is a non-empty set, R is a binary relation
on WxW,and V : P — (W) is a valuation function; then we define the
semantics of the nabla modality as follows.

M,wEV® iff Ve e &, Jv with wRv such that M,v | ¢, and
Vv with wRv, Jp € @ such that M, v = .

The semantics of the nabla modality states that every formula in the cover set is
possible and furthermore, at each accessible state we have a satisfiable formula
from the cover set. In that sense, nabla covers the set of accessible states with
the formulas from cover set. Moreover, notice that cover set may be inconsistent.

It is also noteworthy to see that the classical modal connectives in L are
definable in terms of the nabla modality as follows.

Cp=Vi{p, T}  Op=V0DVV{p}



The semantics of the nabla modality can also be expressed in game theoretical
terms. In a verification game between Vbelard and Jloise, the game rule for the V
modality is given as follows. At the game state (w, V@) with state w, Vbelard can
make two different moves. He can either choose a formula ¢ from @ after which
Jloise makes a choice for the accessible state v at which ¢ is true. Alternatively,
Vbelard can choose an accessible state v forcing Jloise to choose a formula ¢
from &. Let us denote the board game between Vbelard and Jloise starting from
the state w with the formula ¢ as E(w, ¢). The game-states in the game F(w, ¢)
are of the form (w,¢) where w is a state in the model and ¢ € Ly. The aim of
the verification game is to evaluate a given formula, by reducing it step by step
to its simpler subformulas, eventually reaching propositional variables for which
the decision procedure for truth is trivial. The following immediate theorem
summarizes this brief discussion here.

Theorem 1. In the evaluation game E(w, ) for ¢ € Ly at a state w, Jloise
has a winning strategy if and only if w = .

Let us now make some further observations on the behavior of the nabla
modality. First, we note that the nabla modality does not provide a complete
picture of the modalities in a given model as illustrated by the following example.

Ezample 1. Consider the following picture. In this example, observe that the
states v and u are accessible from w, and the states u and v satisfy the propo-
sitional letters p1,p3 and pe,ps respectively. Let us take &1 = {p1,p2}, P2 =

p2,pa [v]< [w] {u] p1,ps

{p3,p1}, @3 = {p1,pa} and finally &4 = {p2,p3}. Thus, w & A\, ., V®;. Notice
that in this example, V cannot distinguish @; from ®; for i # j.

Regarding this example, first, notice that the truth of nabla modality is in-
variant under bisimulation, as expected. A straight-forward induction argument
shows this. Furthermore, the nabla operator is closed under union, that is, if
w = VP and w = V¥, then w = V($ U ¥). However, it is not closed under
intersection. To see this, consider the Example 1, and take ®¢; and ®3. Even if
w = V@, and w = V@3, we observe w = V{p1} where {p1} = #; N P3. Nev-
ertheless, by imposing an intuitive additional constraint, and a slight abuse of
the language, we can formulate when nabla is closed under the superset relation.
That is, if w = V& and w = Oy, then w |= V(P U {p}).

The last remark shows that once the current state is covered by the nabla
operator with some set of formulas @, then we can expand this cover set by
adding some other formulas which are possible at the current state. Then, the
immediate question is the following: Can we go backwards? In other words,
starting from a cover set @, can we make it smaller and smaller by eliminating
some formulas each time, and obtain a minimal cover set?



3 MinimalNabla

Let us first introduce some short-hand notations. By ()™ we denote the exten-
sion of ¢ in the model M, i.e. the set of points where ¢ is true in M. For a state
w in M, [w]™ denotes the set of accessible states from w in M. By ||w||™, we
denote the set of formulas which are true at the state w. When it is obvious, we
will drop the superscript. As we underlined earlier, for our current purposes, we
consider only finite cover sets here.

Proposition 1. For a given set of formula @, if there are two distinct formulas
0, € & such that (p) N [w] = (¢¥) N [w]; then we have M,w |= V(P — {p}) if
and only if M,w = V(P —{¢y}).

The above proposition is given for two formulas, and it is not difficult to
generalize it to a set of formulas.

Proposition 2. For a given set of formula @, if there are two disjoint sets of
formulas 11, C & such that {{U,.c (7))} N [w] = {Uyee (¥)} N [w]; then we have
M,wE V(P - 1) if and only if M,w |E V(P — ).

Moreover, we can remove the formulas from a cover set if they can be “cov-
ered” by other formulas.

Proposition 3. Let w = V®. Then, w = V(P — &) for some ¥ C & if the
Jollowing holds |J ¢y (1) N [w]) € Upeq_w ((¢) N [w]).

The ideas and observations in the above propositions hint out how we can
remove some formulas from the cover set to obtain a smaller cover set. However,
notice that minimal sets as described above are not necessarily unique.

Definition 1. Given w = VP, we call & a $-minimal cover set if &' C @ with
w = VP and there is no & C &' with w = VP".

Given w = V@ for a fixed w, we now consider the complexity of finding a
minimal cover set ¢ C @ with w |= V@'. Let us call the problem of finding a
minimal cover set MinimalNabla.

Theorem 2. MinimalNabla is NP-complete.

MinimalNabla problem may have some immediate applications when, for in-
stance, minimal knowledge/belief base of an agent needs to be computed or
verified. Moreover, when a resource-bound agent needs to economize without
losing much information, it is very important to know the complexity of this
procedure. MinimalNabla solves this issue.



3.1 Epistemic Entrenchment

The procedure to obtain the minimal cover set does not depend on any ordering
of the formulas. In some applications, however, formulas in a cover set may need
to be ordered with respect to their epistemic value. As Gérdenfors and Makinson
stated it “Even if all sentences in a knowledge set are accepted or considered
as facts, this does not mean that all sentences are of equal value for planning
or problem-solving purposes. Certain pieces of our knowledge and beliefs about
the world are more important than others when planning future actions, con-
ducting scientific investigations, or reasoning in general” [6]. Following the same
approach, we now assume an order on the knowable formulas in a given cover
set with aim of constructing the most entrenched cover set. We start by briefly
mentioning the fundamentals of epistemic entrenchment.

The relation ¢ <M 3 denotes that “y is at least as epistemically entrenched
as @ for agent ¢ in model M”. This relation can be lifted to the level of cover
sets. We say “the set of formulas @ is at least epistemically entrenched as ¥”
and write ¥ < @ if for all ¢p € ¥, there is a p € @ such that ¥ < ¢. We will
apply epistemic entrenchment to the set of formulas @ to obtain a smaller set
@' C @ such that ¥ < @' for other minimal cover set ¥ C &. We will call ¢’
minimal entrenched subset of @. Then, a natural question is the complexity of
this procedure.

Theorem 3. The problem of selecting the minimal and the epistemically most
entrenched subset & C & of a given cover @ that can cover the all accessible
states from any given state is NP-complete.

4 Further Applications

4.1 Distribution Property

Various observations about the algebraic properties of the nabla operator in the
coalgebras have been made elsewhere [13]. It was shown that the nabla operator
possesses a distribution property and forms a special algebra. Let us start with
defining relation lifting which is an essential element of nabla algebras.

Definition 2. Given a relation R C S1 X Sa, its power lifting relation P(R) C
©(S1) x ©(S2) is defined as follows

P(R) :={(X,X’) :Vz € X,32' € X' such that (z,2') € R and
Vo' € X', 3x € X such that (z,2') € R}

A relation R is called full on Sy and Ss if (S1,52) € P(R), and we write R €
Sl > 52.

Then, the distribution property of nabla algebras is given as follows.

VO ANVY = \/ V{p A : (p,0) € R}
Redpawr



Correctness of the distribution property can be verified by using the seman-
tics of the cover modality and Definition 2 (See [13] for details). The following
example presents a quick application of the distribution property.

Ezample 2. Let & = {p,q} and ¥ = {r, s,t} where each p,q,r,s,t are proposi-
tional variables with the truth values as depicted in the given picture. Let us
assume that w = V@ and w = V¥. Then we have w = V@ A V¥. Note that
here ® N¥ = (). By the distribution property, we then observe the following. Let

p7t@‘ @ '@ q,7,S

R be the relation for (¢,%) € R such that ¢ A1 is true at some accessible state
from w. Then, by the given property we observe w = V{p At,q A1, q A s}. Now
let us take ¢ = {p,q,r} and ¥’ = {t,r, s} such that w = V@' A V¥'. Notice
that & NW' # (). Now, we have w = V{pAt,qgAs,7 As,T Aqg}.

Example 2 hints at how the distribution property can be used in knowledge
representation among agents. For this purpose of ours, we will index the cover
sets in Example 2 with respect to agents allowing expressions such as w |
V&; A V&; for agents i,j. Then, the distribution property makes it possible
to identify the set of knowable formulas for each agent. After ¢, and &; are
distributed, each formula in the joint cover set will have a conjunct per each
agent. In other words, even if each agent can cover the epistemically accessible
states on their own, it is possible to cover them jointly in an interactive fashion.
In due time, we will make it precise how we can split the language for the same
purpose for different agents given a theory.

The following theorem summarizes our discussion so far, and we state it
without a proof which directly follows from the definitions.

Theorem 4. Let @; be a set of formula indexed by agent i. Let w = \;c; VP;.
Then, we can construct a set of formulas ® based on ®;s such that each formula
@ in P is a conjunction of the form ¢ = N\, @; such that ¢; € ®; for each i, and
w = V.

The following example illustrates how nabla modality can be useful in rep-
resenting interaction between epistemic agents as we have argued.

Ezample 3. Theorem 4 can be used to express different perspectives on an event.
Let us take the model in Example 2, and consider cover sets as different per-
spectives (points of views) over the real world per agent. They can be different
scientific explanations of a physical phenomenon, different political points of
view over the same issue etc. Now, the distribution property can be considered a
sort of mediator that puts different perspectives into a joint cover set preserving
the truth. In this case, given, say, V@ and V¥ for two agents with different per-
spectives over the same issue, we can distribute their pieces of information and
facts in such a way that the resulting cover set will have pieces of information
from both agents per piece of information it has.



A similar methodology can be used to discuss epistemic and computational
resources of agents when they consider forming coalitions in distributed systems.
Similarly, for philosophically oriented reader, this discussion directly relates to
belief polarization [8,3]. In order to maintain our current focus in this paper, we
leave it to future work.

4.2 Language Splitting

In an earlier work on belief revision and its syntax, Parikh showed that any
formal propositional language with finite propositional variables can be split
into a disjoint sublanguages with respect to a given theory [14]. A recent work
on the subject extended Parikh’s results to infinitary case allowing infinitely
many propositional symbols in the language [10]. At a foundational level, this
line of research relates to Craig’s celebrated theorem on interpolation. Now, we
first recall the notion of language splitting, and then apply some similar ideas
to cover sets.

Definition 3 ([14]). Suppose T is a theory in the language L and let {L1, Lo}
be a partition of L. We will say L1, Lo split the theory T if there are formulas
©, Y such that ¢ is in L1 and 1 in Lo and T = Con(p, ) where Con(-) operator
takes the deductive closure of its argument. In this case, {L1, L2} is called a
T-splitting of L.

Theorem 5 (Parikh, [14]). Given a theory T in the language L, there is a
unique finest splitting of L, i.e. one which refines every other T-splitting.

Let us now focus on theories formed by a (finite) cover @. Let w be a state
and T be a theory with an extension that includes [w]. Then, there is a unique
splitting of Ly into Ly,s such that w = V&; where &; C Lvy,. In other words,
we suggest that if a theory is satisfiable at [w], then we can cover these states
with different cover sets which are formed with respect to the disjoint nabla
languages which are obtained by splitting Ly with respect to 7.

Ezample 4. Consider the following model that we discussed earlier. Let T =
Con(p,q,r). Then the minimum partition is ¢ = {p} and ¥ = {r,q} where
SNY¥ = and w | VP A VY. Note that for & = {p,q} and ¥’ = {p,r}, we also
have w = V@' A V¥'. However, ¢ and ¥’ do not form a partition for obvious
reasons.

p,r [v] {w] Hulp,q

Now, we generalize the observations we did in the previous example.

Theorem 6. Let w be a state and T be a theory that is satisfied at the accessible
states of w, i.e [w] C (T). Then, there is a unique finest splitting of Ly into
Lv,s such that w = V&; where ; C Ly, .



The Theorem 6 has various possible applications in distributed systems where
resources are allocated to different agents or in epistemic logic and belief revision
where agents’ knowledge and belief are restricted by their syntactical power (that
is their language).

4.3 Dynamic Epistemic Nabla Logic

Previously, we have seen some ways to minimize the cover set without minimiz-
ing the model or set of accessible states. The dual of this procedure seems to
be needed when dynamic epistemic logical issues are considered. In this section,
we discuss a state-elimination based paradigm and consider epistemic announce-
ments in a setting where we can quantify over epistemic public announcements.
For this purpose of ours, we will still maintain the nabla modality as our primi-
tive operator.

Public announcement logic (PAL) is a dynamic epistemic logic where epis-
temic models are updated by external and truthful announcements [15]. When a
public announcement is made, the states that do not satisfy the announcement
are eliminated from the model only to obtain a submodel in which the announce-
ment is satisfied. In other words, in PAL an announcement becomes known after
it is announced. The syntax of PAL includes an announcement modality, yet
PAL is not more expressive than basic epistemic modal logic since the public
announcement modality is reducible to the epistemic modality [16]. Therefore,
PAL does not provides us with a richer language, but with a more succinct and
compact language.

For our epistemic inquiry of the nabla modality, we use S5 frames equipped
with a nabla modality instead of the classical epistemic modality. We will fur-
thermore, extend it with arbitrary announcement operator [1]. We will call our
logic arbitrary nabla public announcement logic, or APALYV for short. The formal
language L is a conglomerate of nabla logic and arbitrary public announcement
logic, and is given as follows!.

plTl-plene|oVe|Ve|[ple]| Dp

The formula [p]t) reads “if ¢ is true, then after the announcement of ¢, ¢ shall
be true as well”. Furthermore, [y reads “after every possible announcement, ¢
is true”. Announcements update the model. Therefore, after the announcement
of ¢, states that do not satisfy ¢ are eliminated, and the announcement becomes
known among all the agents (it also becomes common knowledge). Based on this
idea, semantics of public announcements is given as follows.

Definition 4 (Semantics). Let M = (W, R, V) be a relational modal model.
The semantics of Booleans and Nabla are given already. Then, we define the
semantics of dynamic modalities as follows for w € W.

M,w = [l iff M,w = @ implies M|p,w E 9
Mw =Dy iff for all € Ly, Myw = [$]y

! In the original construction, authors used [J instead of I [1].



The updated model M| is the model M|p = (W' R/, V') where W' = {w
Mwl ), R=ROW' xW') and V! =V W'

Arbitrary announcements quantify over formulas in the language Ly . Other-
wise, if no restriction is made then the definition can be circular, and “it is not
clear that [non-restricted definition] is well-defined” [1].

As we have pointed out already, we consider S5 frames. Before discussing
the axioms of APALYV, let us mention the frame characterizing formulas for
S5 in Lg. Since the translation of the usual epistemic modality Ko = V(@ v
V{p} is given already, we immediately observe the following translations. The
normativity axiom in Ly is given as (VOVV{p — ¢}) — (VOVV{p}) = (VOV
V{¥})). The veridicality axiom T is translated as ¢ — V{¢, T}. The positive
introspection axiom 4 then becomes V{V{p, T}, T} — V{p, T}. Finally, the
negative introspection axiom 5 is translated as V{p, T} = VOV V{V{p, T}}.

Proof theory of APALV admits modus ponens, announcement generaliza-
tion(from F ¢, infer - [¢)]yp, arbitrary announcement generalization (for a propo-
sitional variable p, from - ¢ — [¢]pC infer F ¢ — [p] 1 () and nabla generaliza-
tion (from F ¢ infer F V@V V{x}). Soundness of these rules can be shown in
the standard way.

Let us now give an axiomatization for APALYV based on the axiomatization
of APAL which was suggested in [15,1].

. All instances of propositional tautologies
. S5 axioms for nabla modality

- [elp < (¢ — )

() R (Rl (2
el Ax) < ([e]v A le]x)

- ellWIx < (o A lel)]x

. Bp = [W]e for ¢ € Ly

. [p]V¥ & (p — V]p]¥) where [¢]¥ is an abbreviation for {[p]y : ¢ € ¥}
. BOVY = [p]VV for p € Ly

© 00 O U Wi+

Let us now show the soundness of nabla axioms before making further obser-
vations. We will need the following rules from the basic dynamic epistemic logic:
[¢]O¢ < (¢ — O[p]w) and similar for the ¢ modality: [p]O1 + (p = Op|¥)

For the soundness of the eighth axiom, observe the following.

[PV < [l (A $) A (OV¥))
%{P](/\‘W) [P EVY)

[0OY1A--- N[O ]Oww)A(so%D[ 1VY)
(o = (Olplhr A== AO[Plw) A (p — Dl (Y1 V -+ V aby,)
© = ((Olglr A=+ AO[plthw) AOp ](¢1\/ V'(/)w))
© = (Ol A=+ AO[plvhw) A D([e]th V [¢lYw))
o = V]pl¥

where ¥ = {¢1,...,%,} and [¢]? is an abbreviation for {[p]y : ¢ € ¥}.
Soundness of the other axioms can easily be shown. The completeness of
APALYV is then immediate.



Theorem 7. Arbitrary nabla public announcement logic is complete with respect
to the given aziomatization.

Proof. The proof is the standard completeness argument for most variants of
PAL. The given axiomatization show that every formula in APALV can be
reduced to a formula in APAL. Since APAL is complete (as it relies on the
standard modalities and we consider only finite cover sets), so is APALV. O

Now we can ask whether we can find an announcement invariant cover set.
In an earlier work, we showed that in some systems some formulas are invariant
to announcements, and their truth does not get effected by any announcement
[2]. We called such formulas persistent formulas. Now, we ask a similar question
in the context of APALV whether we can have a persistent cover set.

Question 1. Let M, w | V®. Can there be a nonempty ¥ C @ such that M, w =
Lvy ?

Before answering Question 1, let us reconsider Example 1. Let & = @, and
announce [-p; A —pa]. Then, the states v and v will be eliminated. Thus, we will
not be able to find a nonempty subset of @ which is satisfiable under nabla.

Nevertheless, we have a weaker result.

Theorem 8. Let M,w = V®. Then for all ¢, there is a subset &, C P such
that M, w = [p]VP,,.

Proof. For each ¢ simply remove all formulas which are logically equivalent to
- from @. Thus, define &, = & — {¢p : 1) = —p}. Clearly, ¢, exists, possibly
empty. The correctness of this procedure is then immediate. a

Now observe that [
answer to Question 1.

ped &, can be the empty set, therefore we give a negative

5 Conclusion and Future Work

Apart from the momentum it generated in the fields of coalgebra and category
theory, the nabla modality can provide insights, and perhaps even criticism, for
traditional epistemic modalities within the context of standard modal logic [12].
In this paper, we investigated how nabla behaves in some well-studied epistemic
situations, and discussed some relevant complexity problems.

There are some other possible research directions that we have not investi-
gated in this paper. The idea of cover set immediately invites some topological
ideas to the subject. For instance, the question whether we can come up with a
similar modality that can be helpful for topological compactness is a promising
one.

Last, but not least, en passant, we mentioned that the cover sets can be
inconsistent. This relates to paraconsistent logics which consider inconsistent
yet non-trivial theories. Combined with paraconsistent algebras and categories,
nabla operator seems to offer further insights on paraconsistency as well.
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A Appendix of Proofs

Proof (Theorem 1). We will only prove the theorem for the modal case V.
For left-to-right direction, assume that Jloise has a winning strategy for the



game E(w,V®) for & C Ly. Thus, now at the game-state (w,®), Vbelard can
make two different moves. In the first type of move, Vbelard chooses a formula
¢ € @ forcing Jloise to pick an accessible state v from w at which ¢ is true.
The following rule of Jloise is still in her winning strategy. Therefore, by the
induction hypothesis of the theorem, we deduce that v = ¢ for every choice of ¢
that Vbelard makes, thus (v, ¢) is in the winning strategy of Jloise. On the other
hand, if Vbelard happens to choose an accessible state v forcing Jloise to pick a
formula ¢ € @ at which ¢ is true, by the same argumentation we see that (v, )
is in the winning-strategy of dloise. Considering the fact that the initial choice
by Vbelard also fits in the winning strategy of Jloise, we deduce that (w, V) is
in the winning strategy of Jloise.

For the right-to-left direction, assume that w = V@. Then, by the game
rules, we see that after either choice of Vbelard, we end up with a situation
where v = ¢ for accessible state v and ¢ € @. By the induction hypothesis,
then we see that Jloise has a winning strategy at the game-state (v, ¢). Notice
that whichever type of moves that Vbelard makes, we end up with a game-state
at which Jloise has a winning strategy. Then, by the definition of the notion
winning strategy, we take one step to see that Jloise has a winning strategy at
the game-state (w, V).

This concludes the proof. a

Proof (Proposition 1). Note that we assumed that ¢ and ¢ are supposed to
be distinct elements of @ as otherwise the result is trivial. Here, we will show
one direction of the proof and leave the other direction to the reader as it is
analogous. Now, assume w = V@, and further suppose that for some ¢, ¢ € P,
we have (¢) N [w] = (¥) N [w].

Suppose, w = V(@ — {¢}). Then, by definition, we have that for all o €
(@ — {¢}), there is a v € [w] such that v |= «; and on the other hand, for all
v € [w], there is & € @—{¢} such that v = . We will show that w = V(&—{¢}).

For the first conjunct, take an arbitrary 5 € (@ — {+}). Since (¢ — {¢}) C &,
we observe 8 € @. Therefore, by assumption and definition, there is a v € [w]
with v = 5. So, we are done with the first conjunct immediately.

In order to show the second conjunct, let us take an arbitrary state v € [w].
By assumption, there is a € (? — {¢}) such that v = a. If a # 1), we are done. If
a = 1, then we observe v € (¢) for v € [w]. Thus, v € (¢) N [w]. By assumption,
then v € (¢) N [w]. Thus, w = ¢ where ¢ € (P — {¢}). Thus, for a given v € [w],
we have a formula ¢ € (@ — {¢}) with v |= ¢.

Hence, w |= V(@ — {¢}). The converse direction is analogous, and this con-
cludes the proof. a

Proof (Proppsition 3). Assume w = V@. For some ¥ C @, suppose further the
following U,y ey (%) N [u]) € Uypeq_o (#) N [1])-
Let a € & — ¥ be arbitrary. Then, a € &, and by assumption, there is a
v € [w] with w = a. Thus, for any a® — ¥, there is a v € [w] such that v = a.
Now, take an arbitrary v € [w]. Then, by assumption, there is a ¢ € @
such that v = ¢. We have to separate cases: either ¢ ¢ ¥ or ¢ € ¥. We are



immediately done if the former case holds. If the latter is the case, by assumption,
we observe that at each state that the 1 holds, there exists some formula in ®—V.
Thus, for every v € [w], there is a formula in @ — ¥ satisfied at w.

Hence, w = V(P — V). O

Proof (Theorem 2). Given @, a nondeterministic algorithm needs to guess the
subset &’ C @ and check in polynomial time if it covers.

For the hardness part of the proof, we will select a known NP-complete
problem. We pick the MinimumCover problem, namely, given a collection C' of a
set S and a natural number n, the problem of finding whether C' contains a cover
of S of size n or less [7]. We then translate MinimumCover to MinimalNabla by
exhibiting a polynomial transformation from MinimumCover to MinimalNabla.

Take a set S and a collection C' with S C UC as an arbitrary instance of
MinimumCover. We will then construct a model and a cover set @. Put [w] := 5,
let |C] = I, and for each U; € C, define a formula ¢; that holds at those
states. Define @ := U;crp;. Thus, we have w = V@. Clearly, our construction is
polynomial time.

Since in MinimalNabla we are not concerned with the size of the minimal
cover set, we will run the MinimumCover problem for every n < |®| starting from
n = 1. Then, the MinimumCover problem will find the minimum covering C’ for
S. Let us say |C| = J. Then, define &' = Ujcsyp;, i.e. put those formulas ¢;
whose corresponding set U; is in C, to ¢'. Then, we will have @' as a minimal
cover set with wV®’'. Correctness of this is immediate. For each state in [w] (i.e.
S), there is a formula (i.e. cover) ¢ € & with w |= ¢. The formula ¢ exists,
because otherwise C’ would not be a cover.

Since finding a minimum cover problem MinimumCover is NP-complete and
our transformation procedure is polynomial time, it follows that MinimalNabla
is NP-complete. a

Proof (Theorem 3). By using the Knapsack problem or weighted subset cover
problem which are known to be NP-complete, the proof is immediate. a

Proof (Theorem 6). The proof is an extension of Parikh’s original proof [14].
Let T be a theory. Assume further that {£;,...,L,} be a partition of the
given language £ and My, ..., M, be models such that each M; is defined within
L;.
Define Mix(My,...,My;Lq,...,L,) as the unique structure that agrees with
M; on L; for each . Now we need the following lemma. The structure Mix exists
and is unique since the languages L4, ..., L, partitions £, and by definition M;

is defined within £;.

Lemma 1. {L4,...,L,} is a T-splitting iff for each model My,..., M, with
M; ET, we also have Mix(My,...,My;L1,...,L,) ET.

Proof. (Lemma 1) Let T' = Con(p1,...,p,) where ¢; € L£;. Assume for each
submodel M; =T, we set M’ = Mix(My,...,Mp;Ly,...,Ly). Then, for each
i, M agrees with M; and therefore M; |= ¢;. Thus, we conclude, M’ = T.



For the converse direction, define Mod(T) = {M : M |= T}. Then, Mod;
is the projection of Mod to the language £,;. Therefore, M C Mody(T) X -+ X
Mod,,(T). For the converse direction of the subset inclusion, take an arbitrary
M € Mody(T) x -+ x Mody,(T). So for each i, there is a model M; such that
M; =T and, M and M, agree on L;. Then, M = Mix(M,...,M,; L1,...,Ly),
by definition. Thus, M |= T. Therefore, M € Mod(T'). We now conclude that
Mod(T) = Mody(T) x -+ x Mod,(T).

Now, let U; € L; such that Mod;(T) = Mod(U;). Then, we observe that
Modi(T) x -+ x Mod,(T) = Mod(Uy) x -+ x Mod(Uy,) = Mod(T). Thus,
T = Con(Uy,...,Uy,). Consequently, {L4,...,L,} is a T-splitting.

This finishes the proof of Lemma 1.

Now we still need to establish the existence of finest splitting that covers the
language. This part simply follows from Parikh’s original proof. In order to have
a complete discussion of the subject matter, we will repeat it nevertheless.

Let P ={L4,...,L,} be a maximally fine splitting. We will now show that if
it is maximally fine, then it is the unique finest splitting. Suppose not. Therefore,
there is another splitting P’ = {£], ..., £}, } which is not refined by P. Therefore,
there is some £; and L£; that do overlap while one does not contain the other.
Without loss of generality, let us suppose that ¢ = 57 = 1. Now, consider the
following partition {£], (£4U---UL!)}. This 2-element T-splitting is not refined
by P either.

Consider the splitting S = {£1NL}, ..., L,NLY, LiNLhy, . ., LoNLh, .o  L40
L ... Ly,NL Y

By Lemma 1, it is easy to see that S is also a T-splitting. For each intersection
language £; ﬂﬁ;, define a model M;; that satisfies T', and consequently together
the M;; form a very large Mix(-;-) structure. We now leave the tedious details
to the reader.

Therefore, S is a proper and finer refinement of P even though P was assumed
to be a maximally refined splitting. Thus, P is the finest T-splitting.

Now, to adjust the simple notation we utilized in this proof to the statement
of the theorem, let £ be Ly and £; be Lvy,.

We set =; = Ly, N ([w]). In this notation, =; is the set of formulas which are
true at the accessible states of w and restricted to the language Lv,. However,
some of the =; covers may not cover all accessible states. More precisely, for
some j we may have M, w f= V=;. If this is the case, then we will put some =;s
together in such a way that M, w = V(Z; U =j).

The procedure for this task is follows for each i. If M, w = V=, then set
@; := 5. If this is not the case, search for some = such that M, w |= V(Z;U=)).
If no such = exists, repeat the search procedure for (5; U =) to find some =.
This search procedure terminates as each =;s are the subsets of the given cover
set. Once such =j,5y,..., = are found with M,w = V(Z; U Z;...5}); put
Q-SZ' :EZUUEl

Now, it is easy to see that w = A, V®; by the construction of @;; and by
definition, @;’s are mutually disjoint. Thus, it is a cover splitting.

This concludes the proof of Theorem 6. a



