Chapter 9
Public Announcements and Inconsistencies:
For a Paraconsistent Topological Model

Can Bagkent

Abstract In this paper, we discuss public announcement logic in topological
context. Then, as an interesting application, we consider public announcement logic
in a paraconsistent topological model.

Keywords Public announcement logic * Topological semantics * Homotopy °
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9.1 Introduction

9.1.1 Motivation

Public announcement logic is a formal framework that strives to express various
dynamic aspects of knowledge change. Considered a kind of dynamic epistemic
logic, public announcement logic works as follows. An external agent makes a
truthful and public announcement, then the agents update their epistemic states
by eliminating the possible worlds that do not agree with the announcement. For
example, you may think that today is either Tuesday or Wednesday, then on TV
you hear that it is actually Tuesday today. Then, you eliminate the possibility
that today is Wednesday and come to know that today is Tuesday. Thus, after an
announcement, you come to know the announcement.

Traditionally, public announcement logic (PAL, henceforth) adopts Kripke se-
mantics (Plaza 1989; Gerbrandy 1999). Kripke frames and semantics enjoy a
simplistic approach to modal logics in general, and makes it quite feasible to
express various epistemic issues. However, Kripke semantics is not the only way
to express truth in public announcement logic. In a relatively recent work, a
topological semantics for public announcement logic was given (Bagkent 2012).
In that paper, the completeness and decidability results of PAL with respect to the
topological semantics in several multi-agent frameworks were proven. Furthermore,
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it was shown that topological semantics changes some aspects of PAL compared
to Kripke semantics. For example, announcements may stabilize in more than
steps in topological models, which cannot be the case in Kripke models. Moreover,
topological models exhibit some unexpected properties when it comes to formal
analysis of rationality and backward induction. In topological game models, where
we consider a topology based on a game tree, under the assumption of rationality,
the backward induction procedure can take more than w steps (ibid).

In this work, we extend such results by focusing on the relation between
topologies, public announcements and inconsistency-friendly logics, particularly
paraconsistent logic. By paraconsistent logic, we mean the logical systems in which
the explosion principle (which says that from a contradiction, everything follows)
fails. Therefore, in paraconsistent systems, there are some formulas that do not
follow from a contradiction. Paraconsistent logics help us build inconsistent but
non-trivial theories. As we shall make it clear in due course, from an epistemolo-
gical perspective, paraconsistency and dynamic epistemology show an appealing
interaction. If the given universe admits ontological contradictions (namely, if some
things are and are not at the same time), how can knowledge and the dynamic
change of knowledge be expressed logically? How do they interact? What kind of
dynamic semantics do we need, if we want a universal framework that can work
with some adjustments both in classical and non-classical (paraconsistent, and also
intuitionistic) structures?

One of the main motivation of this work comes from impossible worlds — worlds
which satisfy contradictions. Adopting a model that admits some impossible worlds
immediately raises some questions about the possibility of expressing dynamic
epistemologies in such a model. That is what we achieve in this paper.

The organization of the current work is as follows. First, we briefly remind the
reader the basic topological concepts and structures which we will need throughout
the paper. Then, from a rather technical perspective, we will show that topological
models indeed present a rich and wide variety of possibilities of mathematical
modeling of dynamic epistemologies. Next, we will present paraconsistent public
announcement logic with some examples.

9.1.2 Basics

Let us now start with some basic definitions to make this work more self contained.
Here, we define the classical PAL with topological semantics following (Bagskent
2012).

Given a non-empty set S, a topology o is defined as a collection of subsets of S
satisfying the following conditions.

— The empty set and S are in o,
— The collection o is closed under finite intersections and arbitrary unions.
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We call the tuple (S, o) a topological space. The members of the topology is called
opens. Complement of an open set (with respect to the classical set theoretical
complement) is called a closed set. A function defined on a topological space is
continuous if the inverse image of an open is an open; open if the image of an open is
an open. A function is called homeomorphism if it is a continuous function between
topological spaces with a continuous inverse. Homeomorphic spaces possess the
same topological properties.

The above definition of topological space is given based on open sets. A dual
definition can be given with closed sets as the primitives. In this case, for a given
set S, we define the topology o as a collection of subsets of S with the following
condition.

— The empty set and S are in o,
— The collection o is closed under arbitrary intersections and finite unions.

We will refer to the topological spaces defined this way as closed set topologies.
In this case, members of the topology will be closed sets. Notice that this is a dual
definition for topological spaces.

Given a topological space, we can define a logical model. Let M = (S, 0,v) be a
topological model where (S, o) is a topology and v is a valuation function assigning
subsets of S to propositional variables. We denote the extension of ¢ in a model M
with |¢|™, and define it as follows |p|” = {s € S : 5, M = ¢}. When it is obvious,
we will drop the superscript. Then, for an announcement ¢, we define the updated
model M, = (', 0", v') as follows. Set §" = SN[p[, 0’ = {ONS": O € o}, and v’ =
v NS’ Thus, in PAL, an announcement is made and the states that do not satisfy the
announcement are eliminated in a way that preserves the topological structure. Also,
the updated models are parametrized based on the extension of the announcement, in
which the agents come to know the announcement in the updated model. Logically
equivalent formulas, and even formulas that have the same extensions in the given
original model produce the same updated model. Also, notice that the new topology
o', which we obtained by relativizing o, is a familiar one, and is called the induced
topology, and is indeed a topology (Bagkent 2012).

The language of topological PAL includes the epistemic modality K and the
public announcement modality [-], and they are defined recursively in the standard
fashion based on a given set of propositional variables. We denote the dual of K as
L, and define it as Ly := —K—¢ for a negation symbol —. For simplicity, we only
give the single agent PAL here.

In a topology, for a given set, we have the interior operator Int and the closure
operator Clo which return the largest open set contained in the given set, and
the smallest closed set containing the given set respectively. The extensions of
modal/epistemic formulas depend on such operators. We put |[Ke| = Int(|¢)).
Dually, we have |Lp| = Clo(]g]|). Intuitively, extension of a modal formula is
the interior (or the closure) of the extension of the formula. It is important to note
that in the classical case, epistemic modal operators necessarily produce topological
entities. However, it is not necessary that |p| for a propositional variable p will be
open or closed, as it simply does not follow from the definition.
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The semantics of propositional variables and Booleans are standard. Let us give
the semantics of the modalities here. For simplicity, we give the semantics for single
agent here, and refer the reader to Bagkent (2012) for various multi-agent extensions
that require some more topological operations.

M,s = Ko iff J0€o(s€OAVSY €0,M,s =)
M,s = o]y iff M,s|= @impliesM’,s =y

The semantics of topological models makes it clear why topological models
can distinguish a variety of epistemic properties that Kripke models cannot (van
Benthem and Sarenac 2004). The reason is that the topological semantics for the
epistemic modality K has X, complexity as it is of the form 3V—, while Kripkean
semantics offers I1) complexity as it is of the form V—. Also, even it does not
directly fall within the scope of this paper, topological models handle infinitary cases
better.

PAL with classical topological semantics admits the following standard reduction
axioms.

- lelp < (¢ = p)

= lpl=¢ < (¢ = —[el¥)
— el A x < [ol¥ Alplx
- [¢IKY < (¢ — Klply)

In PAL, the rules of derivation are normalization (- ¢ .. O¢) and modus ponens.
Then, we have the expected completeness and decidability results.

Theorem 9.1 (Baskent 2012). PAL in topological models is complete and decid-
able.

The topological semantics for modal logics has been proposed in early 1940s
even before the well-known Kripke semantics (van Benthem and Bezhanishvili
2007; McKinsey and Tarski 1946, 1944). The literature on the subject has evolved
rapidly with a wide range of applications in philosophy and computer science,
including various pointers to non-classical logics (Mints 2000; Goodman 1981).
Within the family of non-classical logics, in this paper, we consider paraconsistent
logics. We already gave a proof-theoretical definition of paraconsistency which
underlines the fact that much of the work on the subject is from a proof-theoretical
perspective. Yet, the current paper focuses on the semantical aspects of paraconsist-
ency. Dialetheism is the view that suggests that there are true contradictions. Hence,
dialetheism can be seen as a semantical counterpart of paraconsistency. In order to
prevent an inflation of terminology, we will use both terms interchangeably when
no confusion arises.

Paraconsistent logics span a very broad field with applications in computer
science, philosophy and mathematical logic (Carnielli et al. 2007; da Costa et al.
2007; Priest 2002, 2008). We need to underline it at the beginning that, in this
work, paraconsistency does not refer to the meta-logical (such as set theoretical,
topological or arithmetical) properties of the models. For that reason, our definitions,
proof methods and meta-logic are classical, and paraconsistency occurs at an object
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level. Within the pluralistic world of paraconsistent logic, this is indeed one of the
methods to introduce non-trivial inconsistencies into models.

Next, we first discuss various topological results for the classical PAL to show the
strength of the topological semantics and the richness of the applications it provides.
Then, we will take an additional step and discuss PAL in inconsistent models.

9.2 Topological Announcements

9.2.1 Homotopic Announcements

One of the advantages of working with topological models is the fact that a variety
of topological tools can be used within this framework to express a broad range of
epistemic and model theoretical situations. In this section, we will observe various
strengths of topological semantics for public announcements.

We define functional representation of announcements with respect to a topo-
logical model M = (S, 0, v) as follows. For a public announcement ¢, we say ¢
is “functionally representable in M” if there is an open and continuous function
fg’ 2 (S,0) > (8',0") where M, = (§',0”,v’) is the updated model. We will drop
the superscript or subscript when they are obvious. Notice that open or continuous
functions deal with only open (or dually, closed) sets. However, the extensions
of each and every formula in the language (such as the extensions of ground
formulas) are not necessarily an open set. Therefore, open or continuous functions
do not take such formulas into account. Nevertheless, in a model where each
formula necessarily has an open (or equivalently closed) set extension, functional
representation still works.

We observe that public announcements are special kind of functional
representations.

Theorem 9.2. Every public announcement is functionally representable.

Proof. Given M = (S, 0, v), construct M(’p = (§',0’,v’) with respect to the public
announcement ¢. Then, for every open O € o in M, assign f(O) = O' where
O = 0N ino’ in M. Here, notice that O’ can be the empty set for some O € o
which is perfectly OK as f is not imposed to be an one-to-one function. We claim f
functionally represents ¢.

Note that modal formulas necessarily produce open (or dually closed) sets as
their extensions, and they are taken care of by the given function f. However, we
may still have Boolean formulas which do not have open or closed extensions in
the model. However, notice that they do not violate functional representation as the
definition of functional representation quantifies over open sets.

Now, since both, O and O’ are open, so f is an open map. Take U’ € ¢’. Since,
U' = UnNS forsome U € o, the inverse of image of U’ under f is U which is an
open in o showing that f is continuous.
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Thus, we conclude that f functionally represents . O

The converse of the above theorem is not true in general. Not every open and
continuous function represents an announcement as it may not respect the valuation
in the model. Now, we can use functions to represent the relation between the given
(original) epistemic model and the updated model. This is indeed another way to
represent the dynamic aspects of knowledge change in topological models.

Corollary 9.1. In PAL, given topological models and the updated topological
models may not be homeomorphic in general.

Proof. Functional representation of an announcement is not necessarily one-to-one,
therefore may not be a homeomorphism. O

This is quite interesting. The above result indicates that not just knowledge may
change after an announcement, but also the topological qualities of the model may
alter. This is perhaps not surprising, as we would like the announcement to have
an epistemic impact which may change some model theoretical properties of the
model. This observation suggests the following definition.

Definition 9.1. Given two models M = (S,0,v) and M’ = (§'0’,v’). We call M
and M’ homeomorphic ¢-models if M’ is the updated model of M with the public
announcement ¢, and there is a homeomorphism f from (S, o) into (S, ¢0”’) that
functionally represents ¢.

Notice that homeomorphic model relation is not symmetric, but it is reflexive
and transitive. Homeomorphic ¢-models enjoy the same topological qualities after
a specific public announcement (here, ¢). In this context, arbitrary announcements
(Balbiani et al. 2008) can be considered a generalization of homeomorphic ¢-model
to homeomorphic models that remain homeomorphic after any announcement.

For a given model M, consider two different announcements ¢; and ¢, repres-
entable by f; and f, respectively. Then, as [p1][@2]¥ <> [@2][@1]¥, we have the
following situation illustrated in the diagram.

M,

Tfl A Tfl

M,

For simplicity, we assume that M and M’ are homeomorphic models. Then, what
about the connection between M| and M,? We can easily generalize this question
to n many models. For public announcements ¢; functionally represented by f;, and
the updated models M; obtained after announcing ¢;, one can ask about the relation
between M;s? In order to give an answer to this question, we need homotopies.
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Definition 9.2. Let S and S’ be two topological spaces with continuous functions
f.f" S+ S. Ahomotopy between f and f” is a continuous function H : $x[0, 1] +>
S’ such that for s € S, H(s,0) = f(s) and H(s, 1) = g(s).

The definition of homotopy can easily be extended to topological models.
Given a topological model M = (S,0,v) we call the family of models {M, =
(S1, 01, V1) }1ef0.1] generated by M and homotopic functions homotopic models. In the
generation of valuation function v;s of M;s, we put v; = f;(v). Homotopic models
preserve truth, and they can be used to extend the definition of bisimulations in
topological spaces (Baskent 2013).

Theorem 9.3. Given M, consider a family of updated homeomorphic models
{M;}i<, each of which is obtained by an announcement @; representable by f;. Then
fis are homotopic.

Proof. Immediate. O

The converse of the above statement is not always true. Clearly, not each pair
of updated models in a class of homotopic models can be obtained from one
another by an update. Given M, consider the updated models M; and M, where
the prior is obtained by an announcement of p while the latter —p. Even if there is
a continuous transformation between M; and M5, this transformation is not a public
announcement.

Namely, there exists a smooth topological transformation from one updated
model to another. Then, what is the epistemic meaning of it? Can we preserve truth
under such a transformation?

We can make use of an earlier result here (Baskent 2013). Let M = (S, 0,v) be a
given model. Suppose M| = (S1, 01, v1) and M, = (53, 02, v2) are updated models
obtained after the announcements ¢; and ¢, respectively. Let the functions f; and f,
represent ¢; and ¢, respectively. Then, there exists a homotopy H : S x [0, 1] > §
such that H(s,0) = f(s) and H(s, 1) = g(s) where s € S. Now, observe that we
also have v, = fzfl_1 (v1). More importantly, we have another homotopy J such that
J(s,0) = v; and J(s, 1) = v,. It is easy to notice that J/ = v(H). Here, we discuss
this example with only two updates, but the results can easily be generalized to n
different updates.

In other words, the transformation between two updated models require a
renaming or restructuring the real world.

Notice that homotopies discuss the topological connection between different
announcements. The epistemic significance of this concept is the fact that now,
at least in topological models, we can express how differentiated opinions can
be transformed into each other under certain assumptions. This directly relates to
belief polarization (Kelly 2008; Bagkent et al. 2012). Thomas Kelly summarizes
this phenomenon as follows.

Suppose that two individuals — let us call them “You” and “I” — disagree about some

nonstraightforward matter of fact. (...) Suppose next that the two of us are subsequently

exposed to a relatively substantial body of evidence that bears on the disputed question.
(...) What becomes of our initial disagreement once we are exposed to such evidence? (...)
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Exposure to evidence of a mixed character does not typically narrow the gap between those
who hold opposed views at the outset. Indeed, worse still: not only is convergence typically
not forthcoming, but in fact, exposure to such evidence tends to make initial disagreements
even more pronounced. Kelly (2008)

This interesting, yet very common and basic phenomenon can easily be form-
alized in terms of public announcements. In this case, the announcement (“the
substantial body of evidence”) creates different updates on different agents. So far,
this is perfectly normal. What is interesting is that the updated models of two agents
are not transformable to each other — that is they are not homotopic. Thus, they are
polarized.

In this case, homotopic models represent degrees of belief or knowledge where
the models can be, step by step, translated to each other, and such a translation
follows a topologically meaningful pattern — it preserves the topological and ideally
(if it is a special kind of homotopy) model theoretical properties of the models in
question. However, polarized beliefs and knowledge of two agents, in this case,
cannot be transformed into each other, by the mere definition of polarization. Thus,
they cannot be homotopic. This is a simple but direct application of homotopic
public announcements.

In short, there is a close connection between various topological transformations
and model updates after public announcements, and topological PAL models enjoy
various techniques imported from pure topology. Moreover, they may correspond to
various interesting epistemic concepts that are relevant for dynamic epistemic logic.

9.3 Paraconsistent Public Announcements

In classical logic, contradictions are never satisfied. However, in modal philo-
sophical logic there is an interesting conceptual and philosophical notion, called
impossible worlds. By impossible worlds, let us denote those states which satisfy
some contradictions, define them as {x : x &= ¢ A —pforsomey} for a negation
symbol —. Then, the natural question is how to epistemically update an epistemic
model with impossible worlds.

For example, if we consider God as an impossible state in our mental model, how
can we then update our mental epistemic model after we hear about a person healing
the blind or splitting the Moon? Mental models may possess some contradictions,
yet, they still function in a (relatively) rational and sound fashion. People believe
in gods, they believe in miracles, yet they still function mostly rationally — both
dynamically and epistemically. How can we portray such epistemic situations when
an external announcement updates the models with impossible worlds?

Law, as a major platform for inconsistencies, exhibit similar puzzling situations.

Suppose that there is a certain country which has a constitutional parliamentary system
of government. And suppose that its constitution contains the following clauses. In a
parliamentary election:
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(1) no person of the female sex shall have the right to vote;
(2) all property holders shall have the right to vote.

(Priest 2006, p. 184)

Let us denote the above rules as public announcements ¢, @, respectively.
Therefore, when the Law (1) was introduced, we can consider it as [¢;], and
similarly Law (2) as [¢,]. The introduction of new laws to the legal system can be
thought of as public announcements. For simplicity, consider them as a simultaneous
announcement of the form [¢; A ¢;]. Therefore, when [¢; A @] is announced, the
states that satisfy the contradictory statement will be kept — which is the set of
female property holders, in this example. This announcement does not (and should
not) trivialize the system. In this case, contradictions exist, yet we are supposed to
reason soundly in this model, we cannot let the model get trivialized or explode.

Another motivational example comes from a neighboring field of belief revision.
Priest discusses AGM style belief revision from a paraconsistent perspective, and
revises the AGM postulates (Priest 2001). Belief is defined weaker than knowledge.
Therefore, the immediate next step is to consider knowledge in a paraconsistent
universe, and observe how it changes.

Our goal now is to give a formal model which can descriptively and normatively
express such situations.

9.3.1 Models

Topological semantics provides a versatile tool to express truth in a wide range of
classical and non-classical logics. As we already showed, it is also a wise choice to
express various dynamic and modal issues.

While discussing the classical topological semantics, we underlined that only the
modal formulas produce topological sets (opens or closeds). Boolean formulas do
not necessarily produce such sets. Let us now assume that we have a closed set
topology where each member of the topology is a closed set, and stipulate further
that the extensions of propositional variables are also closed sets. If propositional
variables are closed sets, then their arbitrary intersections and finite unions will
remain closed. Therefore, conjunctions and disjunctions of such propositional
variables will still be closed sets. However, this stipulation makes an important
difference for negation as the compliment of a closed set is not necessarily a closed
set. For that reason, we cannot use the standard definition of negation as the set
theoretical complement on the extension of the formula. So, we need to redefine it
in closed set topologies. In our system, we define negation as the “closure of the
complement” (Bagkent 2013; Goodman 1981; Mortensen 2000). Let us denote this
paraconsistent negation by —.

As an illustration, consider the formula p A —p. Let us say that the extension of p
is O € o where o is a closed set topology, and O is a closed set. Then the extension
of p A —p is O N Clo(0) which is d(0), where d(-) is the boundary operator which
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is defined as 00 := Clo(0) — Int(0), and O denotes the (classical) set theoretical
compliment of O. Therefore, the contradictions are satisfied at the boundary points.
Thus, we now have a paraconsistent logic. The reason why explosion fails is because
for some formula ¢, the extension of ¢ A —¢ is not necessarily an empty set, but it
is d(0) for some closed set O. Thus, it is not necessarily a subset of every set, so
not every formula follows from a contradiction in this system, failing the explosion
property.

However, we need to elaborate a bit more on the epistemological meaning of
the use of paraconsistent spaces in the context of public announcement logic. The
classical PAL heavily depends on the law of non-contradiction. An external and
truthful announcement is made. Then, the agents update their epistemic models by
eliminating the states in their model which do not agree with the announcement,
followed by the reducing the epistemic accessibility relation or the topology and the
valuation with respect to the new, updated model. Therefore, the classical PAL does
not control the inconsistencies, it completely eliminates them. Yet, in paraconsistent
spaces, some contradictions need not be eliminated as they do not trivialize the
theory. In short, the main problem caused by inconsistencies is that they trivialize
the theory due to the choice of the underlying logic. Therefore, if there exists some
contradictions that do not trivialize the theory (again, due to the choice of the
underlying logical framework), there seems to be no need to eliminate them. This
is our pivotal point for paraconsistent PAL. Also, notice that intuitionistic logic also
admits explosion, thus suffers from the same problem as the classical logic.

Here, notice that we do not focus on inconsistent announcements or non-truthful
announcements per se. Our framework reflects paraconsistent modal realism, and
allows inconsistent possible worlds. Moreover, we also follow the standard “state
elimination based” paradigm for PAL — with some differences which will be
clarified in due time. Model theoretically, we can also eliminate the accessibility
relation arrows or relativize only the topology and leaving the universe intact
and keep the states. From modal logical perspective, there seems to be no model
theoretical difference between these methods.

In paraconsistent spaces, public announcements obtain a broader meaning.
Namely, when ¢ is announced in a paraconsistent space, it simply means “Keep the
states that satisfy ¢”. It can very well be the case that some of the states that satisfy
@ may also satisfy its negation —¢@. Clearly, this stems from the fact that negation
— in paraconsistent PAL is not classical, thus the methods of “eliminating the
states that do not satisfy the announcement” and “keeping the states that satisfy the
announcement” are not identical, unlike in classical logic. This distinction surfaces
very clearly in paraconsistent PAL, and is one of the most important contributions
of paraconsistent public announcement logic.

Let us now give a precise meaning to the public announcements. First, we define
the updated model M’ after the announcement the same way. Let M = (S, 0, v) be
a topological model where (S, o) is a closed set topology where every K € o is a
closed set. For a formula [¢], we obtain an updated model M;, = (S',0’,v") where
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S =8SN|pl,o’ ={KNS :K €o},and v' = v NS’". We will remove the subscript
when it is clear from the context.

Notice that there could also exist some other ways to revise the given model after
an announcement. In other words, one may wish to exclude the states that satisfy the
negation of the announcement from the space. We define M, := (S\|—¢], o’,v') as
the model obtained after the announcement of [p]. We will call M, as the reduced
model. Clearly, in classical logic, M; = Mf/) for all models M and all formulas ¢.
But, in paraconsistent PAL, the reduced model is a subset of the updated model.

Lemma 9.1. In classical PAL, for a model M, updated model M’, and reduced
model M~ are identical. In paraconsistent PAL, M~ C M.

Proof. Follows immediately from the definitions. O

Let us now present the formal aspects of paraconsistent public announcement
logic, which we will call ParaPAL in short. We define the syntax of ParaPAL as
follows for a propositional variable p and a falsum symbol L.

Lipl—elone|Kellple

As expected, K is the knowledge operator, and [¢] denotes the public announcement
of ¢. We define disjunction and implication in the usual way. The dual operator L
is defined as expected: Lp := —K—p. For a more detailed exposition of multi-agent
PAL in topological setting, see Bagkent (2012). For simplicity, both in notation and
exposition, we will only discuss the single-agent ParaPAL in this paper as extending
it to a multi-agent case is straight-forward (Bagkent 2013).

Let us give the semantics of ParaPAL now. Note that in ParaPAL, we have |—p| =
Clo(S\ |p]). Also, L is true nowhere (even if p A —p can be true). The semantics for
propositional variables and Booleans are as usual. Let us reinstate the semantics of
the modal and dynamic operators.

M,s = Ko iff A0€o0.(s€OAVS €0 5, ME @)
M,s = [ply iff  M,s|= @ impliesM’, s =y

In ParaPAL, the fact that after an announcement, the updated model will keep
the states that satisfy the announcement and also may satisfy the negation of
the announcement reflects the basic dictum of paraconsistent logic: Paraconsistent
logics distinguish (at least) two different types of trues and falses. The trues that
are only true and the trues that are also false; and similarly falses that are only
false and the falses that are also true (Priest 1979). Therefore, in ParaPAL, after an
announcement of ¢, the agent comes to know ¢ (i.e. M, s = Kg), but we may also
consider —¢ possible at the same state (i.e. M, s = L—g).

An interesting observation here is that in ParaPAL, since the extension of each
propositional variable is a closed set, we have Lp <> p. This observation follows
from the topological fact that the closure of a closed set is already itself. That
is, if the extension of each formula is a closed set already, its extension under
the epistemic modal operator L will be the closure of the extension of the given
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formula. But, the closure of a closed set is already itself by definition, therefore, the
modal operator will not change the extension of a given formula yielding the logical
equivalence Ly <> ¢ (Baskent 2013). Nevertheless, for expressivity purposes, we
will keep the epistemic modal operator. This is a design decision similar to the
classical PAL where the public announcement operator is not more expressive, yet
provides succinctness (Kooi 2007). For convenience, we call the static fragment of
ParaPAL (without the public announcement operator, but with the modal epistemic
operator) as PTL after paraconsistent topological logic.

Before proceeding further, we need to make sure that the updated topology in
ParaPAL is indeed a topology.

Lemma 9.2. Given a closed set topology (S, o). Then, for any p with a closed set
extension, the updated space (S',0") where S’ = SN |p|ando’ = {KNS' :K € o}
is also a topological space.

Proof. The topology (S, ¢’) is indeed a well-known topology and called an induced
topology. See Bagkent (2012), for example, for a direct proof. O

The above lemma ensures that the semantics of public announcements in
ParaPAL is well-defined.

9.3.2 Further Observations
9.3.2.1 Epistemic Modal Operator Is Redundant
An interesting result of PTL is that the epistemic operator is redundant. Neverthe-
less, for succinctness reasons, we keep the epistemic operator, as we already argued.
Lemma 9.3. ParaPAL and PTL are equi-expressible.

We will focus more on the reduction of ParaPAL to PTL in the next part.
Lemma 9.4. ParaPAL is more expressive than PAL.

In ParaPAL, we can have true statements such as [p]K(g A —¢). It would not
be wrong to think that the introduction of impossible worlds to the model provides
expressive richness for ParaPAL.

9.3.2.2 Reduction Axioms

Let us see whether the standard reduction axioms of classical PAL (which we gave
in the Introduction) works in ParaPAL.

Consider the axiom [p]p <> (¢ — p) on a ParaPAL model M = (S, g, v) where
w € S, and p is a propositional variable. Suppose further that M, w = ¢.
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MwkE[plp iff M, wgkp
iff Mwkp
iff M,wkE (¢ —>p)
Notice that the above result simply depends on the fact that the valuation of the
propositional variables are independent from the topology.

ParaPAL presents a new negation. Thus, it is more important now to consider the
reduction axiom for negation: [p]—y < (¢ — —[p]¥). Similarly, take a ParaPAL
model M = (S, 0,v) where w € S, and p is a propositional variable. Suppose further
that M, w = ¢.

Mwilpl-y  iff M. wE -y
ifft weCloS"\ |yl
ifft — weClo((SNleh\ vl
as w € |g| is assumed
ifft  weCloS\ (lel NIY])
ittt w.ME —[ply

As we already pointed out, the reduction axioms for the epistemic modal operator
holds vacuously. Thus, we obtain the following result.

Theorem 9.4. ParaPAL reduces to PTL by the following reduction axioms:

[¢lp < (¢ — p)

lp]—¥ < (¢ — —[o]¥)
= [oly A x < ol Alelx
[p]Ky < (¢ — Klpl¥)

Proof. We already showed the soundness of the first two axioms. The third one
on conjunction follows immediately, and the fourth one on the epistemic modality
follows almost trivially as in ParaPAL and PTL the epistemic modality becomes
redundant due to the properties of the closure operator (Bagkent 2013). O

9.3.2.3 Topological Results

The most important advantage of adopting a topological background theory to
express dynamic epistemic matters in a paraconsistent logic is to have the ability
to make use of the topological properties of the model in understanding dynamic
epistemic reasoning. In this section, we will consider various relevant topological
concepts, and observe how they relate to expressing dynamic epistemologies.

Definition 9.3. A set X is called connected if A N B # @ whenever A, B are closed
non-empty subsets and X = A U B. It is called totally disconnected if all of its
subsets with more than one element are disconnected.

An interesting result for PTL models is the following.

Theorem 9.5 (Baskent 2012). A PTL model with totally disconnected topology
cannot be inconsistent.
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This theorem suggests a way to make the space consistent. It is also useful for
our purposes in this paper. In other words, if the public announcement disconnects
a space, then we can reduce the inconsistency to consistency by means of public
announcements. The following theorem establishes the connection between incon-
sistent and consistent public announcement models via topological operations.

Theorem 9.6. Let M = (S, 0,v) be ParaPAL model where (S, o) is an arbitrary
topological space. Then if there exists a formula ¢ such that the topological
space (S', 0') obtained after the announcement is totally disconnected, then Mf/) =
(8',6’, V) cannot be inconsistent.

Proof. Given a ParaPAL model M = (S, 0,v), call the updated model M(’/,. By

reduction axioms, M| ; reduces to a PTL model without changing the topology. Thus,

if M(’/), as a PTL model, is disconnected, by Theorem 9.5 it cannot be inconsistent.
O

However, we should not over-read the above theorem. The existence of the public
announcement ¢ that can turn arbitrary topological spaces to totally disconnected
topological spaces is not guaranteed in each and every model.

A similar connection can be built between the static PTL and the dynamic
ParaPAL.

Theorem 9.7 (Baskent 2012). Let X be a connected topological space of closed
sets with a PTL model on it. Then, the only subtheory that is not inconsistent is the

empty theory.

We can improve the above result within the context of ParaPAL as follows.

Theorem 9.8. Let M = (S, 0,v) be a ParaPAL model where (S, 0) is a connected
topological space of closed sets. Then, the announcement of 1 produces an updated
model of M that has consistent theories.

Proof. Let M = (S, 0, v) be a ParaPAL model. We know that it is also a PTL model
with the same topological structure. By Theorem 9.7, we know that the only theory
that is consistent is the empty theory. In public announcement setting, we obtain this
by announcing L which is true nowhere. O

The above theorem is interesting. It reminds us that | is nowhere true in
paraconsistent spaces whereas some contradictions (in the form of ¢ A —¢ for some
@) can be true somewhere. Additionally, it shows that the boundary points, the points
that satisfy contradictions, are crucial to controls the inconsistencies. Concepts such
as connectedness, as they relate to the boundary points, therefore play an essential
role capturing inconsistent epistemologies in a dynamic setting.

An interesting aspect of topological PAL is whether/how the announcements
stabilize the model, and how we can reach the limit models.

Definition 9.4. For a model M and a formula ¢, define the announcement limit
lim(M, ¢) as the first model reached by successive announcements of ¢ that no
longer changes after the announcement is made.
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With static, ground Boolean formulas, the limit models are reached immediately
after the first announcement. Moreover, in topological models for classical PAL, it
is known that stabilization can take more than w steps (Baskent 2012). This can also
be seen as one of the strengths of topological models within the context of infinitary
models. Then, the natural question is whether this property remains true in ParaPAL.

Theorem 9.9. Model stabilization for ParaPAL models cannot take more than
steps.

Proof. The key point here is to observe that different definitions of common
knowledge coincide in ParaPAL. This is usually the standard way to prove this
statement (van Benthem and Sarenac 2004). As widely known, an announcement
becomes a common knowledge after it is announced. Therefore a way to see how
long the stabilization takes is to observe whether different definitions of common
knowledge agree in ParaPAL.

Consider the following two definitions of common knowledge in Kripke models
which we will only give in words, and refer the reader to van Benthem and Sarenac
(2004) for a more detailed discussion.

— The reflexive and transitive closure of accessibility relations
— The fixed-point of the epistemic operator

In Kripkean models, these two definitions coincide as the knowledge modalities
distribute over any arbitrary conjunctions. However, in PAL with classical topolo-
gical semantics, these definitions do not coincide (van Benthem and Sarenac 2004;
Baskent 2012).

On the other hand, in ParaPAL, since we have a closed set topology, and arbitrary
intersections of closed set is still a closed set, we observe that the two definitions of
common knowledge coincide, and they stabilize less than w step. This can also be
seen by the fact that the ParaPAL reduces to PTL losing is dynamic and epistemic
modalities which make the stabilization faster. O

Another interesting direction is to observe how public announcements behave in
some special inconsistent topological models. Now, we can turn into a well-known
topological space, and observe how it affects the ParaPAL models. In Hausdorff
spaces where distinct points have disjoint neighborhoods, we obtain the following
results. Also note that, as a fact, in Hausdorff spaces compact sets are always closed.

Theorem 9.10. Let M = (S, 0, v) be a ParaPAL model where (S, 0) is a compact
Hausdorff space. The stabilization for M takes less than w steps.

Proof. Let M = (S, 0, v) be a ParaPAL model where (S, o) is a compact Hausdorff
space. Then, it is a closed set topology (thus, we do not need to impose it
additionally). Since it is compact every arbitrary cover has a finite sub-cover.
Thus, the stabilization, even if it takes more than w-step can be converted into a
stabilization with finitely many steps. O

Then, the next question is whether the PAL updates employ a continuous
transformation in the model. Namely, given a ParaPAL model M and an arbitrary
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formula ¢, what is the connection between M and M; in terms of continuous
transformations? For this question, we use the functional representation of an-
nouncements, which we defined earlier. The following theorem holds immediately.

Theorem 9.11. Every announcement is functionally representable in ParaPAL.

Notice that, similar to the classical case of topological PAL, this result does not
entail that f as above is truth preserving.

Now, we take one step further and consider the separation axiom T or perfectly
normal spaces.

Definition 9.5 (Perfectly normal spaces). Given arbitrary closed sets K; and K, in
a topology (S, o). If there exists a continuous function f : § + [0, 1] that separates
K, and K; such that f~1(0) = K; and f~!(1) = K>, then (S, 0) is called a perfectly
normal topological space.

We then have the following theorem.

Theorem 9.12. Let M = (S, 0,v) be a ParaPAL model where (S, o) is a perfectly
normal topological space. If for two formulas ¢ and ¥, M ¥ ¢ A Y, then there
exists a continuous transformation between M (’p and M :p

Proof. Let M = (S, 0,v) be a ParaPAL model where (S, o) is a perfectly normal
topological space. Denote the extension of |¢|M = K| and |¢|¥ = K. Then, as
M ¥ ¢ A, we have |p A ¥|Y = @. Then, there exists a continuous function
f: S+ [0,1] that separates K; and K, such that f~!(0) = K; and f~'(1) = K, by
definition.

Now, consider M(; and Mf//. In this case, observe that the carrier sets of M(; and
Mf// are K; and K respectively, again by definition. Thus, the transformation ¢ from
M, to M, is given as follows:

1(x) =f'(f(x) + 1), Vx € K,

The transformation ¢ from My, to M, can also be defined similarly:

') =) —1D.VyeKs

By definition, # and ¢ are continuous. However, notice that, the transformation ¢
is not truth preserving, nor a bisimulation. Therefore, the continuous transformation
is, semantically, a renaming. O

Continuous transformation between two updated models mean that the topolo-
gical (thus model theoretical) qualities of the two models are the same. Yet, since
they may not have the same propositional valuation, these two models may not be
bisimular.

In this section, we consider some topological concepts that are relevant to our
discussion of paraconsistent public announcement logic. The field of topology is
virtually unbounded, and it is possible to consider many other topological spaces
and notions, and their impact on paraconsistent epistemologies.
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9.4 Conclusion

Public announcement logic is an interesting playground to observe how epistemic
reasoning based on paraconsistency works dynamically. Agents in ParaPAL can
reason soundly in a world of inconsistencies. Our system is based on an inconsistent
universe, yet takes announcements as honest and truthful epistemic operations.

The field is rich, and there can be considered a variety of future work possibilities
including the algebraic connection between paraconsistency and public announce-
ments, and paradoxical announcements. We leave it to future work.

Another interesting direction is the relation between mereology and public
announcements. Mereology is the research area that studies the connection between
parts and wholes, and exhibits intriguing algebraic qualities. Therefore, the question
of how the relation between parts and wholes change after a public announcement
is yet another interesting research direction to pursue.
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