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Public Announcement Logic

Introduction |

Public announcement logic is a well-known example of dynamic
epistemic logics (Plaza, 1989; Gerbrandy, 1999; van Ditmarsch

et al., 2007).

The contribution of public announcement logic (PAL) to the field
of knowledge representation is mostly due to its succinctness and
clarity in reflecting the simple intuition as to how epistemic
updates work in some situation. But, PAL is not more
expressiveness than the basic epistemic logic (Kooi, 2007).

Public announcement logic has many applications in the fields of
formal approaches to social interaction, dynamic logics, knowledge
representation and updates (Balbiani et al., 2008; Baltag & Moss,
2004; van Benthem, 2006; van Benthem et al., 2005).
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Public Announcement Logic

Introduction |l

Virtually almost all applications of PAL make use of Kripke models
for knowledge representation.

However, as it is very well known, Kripke models are not the only
representational tool for modal and epistemic logics.



DEL

[ Jele]

Topological Semantics

Topological Semantics for PAL |

The way PAL updates the epistemic states of the knower is by
“state-elimination”. A truthful announcement ¢ is made, and
consequently, the agents updates their epistemic states by
eliminating the possible states where ¢ is false. Kripkean
semantics for PAL is well-known.

Let 7 = (T, 7,v) be a topological model and ¢ be a public
announcement. We now need to obtain the topological model 7,
which is the updated model after the announcement. We denote
the extension of a formula ¢ in model M by ()™, so

()M ={w: M,w [ o},

Define T, = (T, 7y, Vo) where T, = T N (@),
T,={0NT,:0€e71}tand v, =vNT,.

Clearly, 7, is a topology.
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Topological Semantics

Topological Semantics for PAL Il

Now, we can give a semantics for the public announcements in
topological models.

T.s = [el¢ iff T,s = ¢ implies Ty, s =9

Language of topological PAL is the language of propositional logic
with the modal operator | (after interior).

78
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Topological Semantics

Topological Semantics for PAL Il

Therefore, the reduction axioms for PAL in topological spaces are
given as follows.

- elp < (¢ = p)

el < (o = —lplv)
el A x) < ([e]Y A lelx)
el < (o = [ply)
Theorem

PAL in topological spaces is complete (and decidable) with respect
to the given semantics.

[y

A~ w N

78
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Topological Semantics

Topological Semantics for PAL - Multi-Agent |

Let 7 =(T,7) and T’ = (T',7') be two topological spaces. Let
X C T x T'. We call X horizontally open (h-open) if for any
(x,y) € X, thereis a U € 7 such that x € U, and U x {y} C X.
In a similar fashion, we call X vertically open (v-open) if or any
(x,y) € X, thereisa U € 7/ such that y € U’, and {x} x U’ C X.
Now, given two topological spaces 7 = (T,7) and 7' = (T, 7'),
let us associate two modal operators | and I respectively to these
models. Then, we can obtain a product topology on a language
with those two modalities. The product model will be of the form
(T x T',7,7") on a language with two modalities | and I'.
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Topological Semantics for PAL - Multi-Agent [l

The semantics of those modalities are given as such.
(x,y)Ele iff JUeT, xeUandVue U, (u,y) =¢
(x,y)ElVe iff IV er,yelU andVu e U, (x,u)E¢
It has been shown that the fusion logic S46S4 is complete with
respect to products of arbitrary topological spaces (van Benthem
& Sarenac, 2004).
The language of multi-agent topological PAL is as follows. We
specify it for two-agents for simplicity, but it can easily be
generalized to n-agents.

pl—p|ene|Kip| K| [plp

78
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Topological Semantics for PAL - Multi-Agent |l

For given two topological models 7 = (T, 7, v) and

T'=(T',7',v), the product topological model

M = (T x T',7,7',v) has the following semantics.
M, (x,y) EKip iff JUeT, xeUandVue U, (u,y) EFe
M, (x,y) EKap iff U €7, yec U and Vi e U, (x,u) E ¢
M, (x.y) = ele iff M, (x,y) [= @ implies My, (x, y) =4

where My, = (T, x T0,, 7,7, Vi) is the updated model. We

H ! /
define all T, Tga, To T@, and v, as before.

10/78
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Topological Semantics for PAL - Multi-Agent IV

Therefore, the following axioms axiomatize the product topological
PAL together with the axioms of S4®54.

- elp < (¢ = p)

el < (o = —lplv)
el A x) < ([e]Y A lelx)
- elKip < (¢ = Kilply)
Theorem

Product topological PAL is complete and decidable with respect to
the given axiomatization.

[y

A~ w N

11/78
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Subset Space Semantics for PAL |

Let us recall a classical example for subset space logic (Moss &
Parikh, 1992; Dabrowski et al., 1996). Assume that a policeman is
measuring the speed of the passing cars where the speed limit is 50
mph. Suppose that the measurement device he uses has an error
range of 5 mph. In one instance, he measures the speed of a car,
and reads that the speed lies in the interval [45, 55].

Yet, the policeman does not exactly know the speed v. Therefore,
he is at the neighborhood situation (v, [45,55]). Then, let us
assume that he hears an announcement, say, a message he receives
via the police radio, saying that the speed of that particular car is
faster than or equal to 48 mph.

12 /78
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Subset Space Semantics for PAL Il

In other words, he learns that v € [48,00]. Then, the policeman
updates his situation to (v, [48,55]) since the announcements are
assumed to be truthful. Therefore, public announcement limits his
possibilities leading to an improvement, and update in knowledge.
The language of the subset space PAL is given as follows:

plL|-plene|Op|Ke|[ely

In SSL PAL, we have an additional axiom: [p]0vY < (¢ — O[p]v)

Theorem
SSL PAL is complete and decidable with respect to the given
axiomatization.

13/78
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Announcement Stabilization |

Muddy Children presents an interesting case for PAL (Fagin et al.,
1995). In that game, the model gets updated after each children
says that she does not know if she had mud on her forehead. The
model keeps updated until the announcement is negated (van
Benthem, 2007).

14 /78
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Announcement Stabilization |l
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Announcement Stabilization IlI

For a model M and a formula ¢, we define the announcement limit
lim, M as the first model which is reached by successive
announcements of ¢ that no longer changes after the last
announcement is made. Announcement limits exist in both finite
and infinite models (van Benthem & Gheerbrant, 2010).

In topological models, the stabilization of the fixed-point definition
version of common knowledge may occur later than ordinal stage
w. However, it stabilizes in < w steps in Kripke models (van
Benthem & Sarenac, 2004).

16 /78
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Announcement Stabilization IV

Theorem
For some formula ¢ and some topological model M, it may take
more than w stage to reach the limit model lim, M.

17 /78
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Announcement Stabilization V

Proof sketch

First, note that it was shown that in multi-agent topological
models, stabilization of common knowledge with fixed-point
definition may occur later than w stage. Also note that it was also
shown that if the limit model is not empty, the announcement has
become common knowledge. Therefore, combining these two
observations, we conclude that in some topological models with
non-empty limit models, the number of stages for the
announcement to be common knowledge may take more than w
steps.

18 /78
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Backward Induction |

Consider the backward induction solution where players trace back
their moves to develop a winning strategy. Notice that the
Aumann’s backward induction solution assumes common
knowledge of rationality (Aumann, 1995; Halpern, 2001) (Although
according to Halpern, Stalnaker proved otherwise (Halpern, 2001;
Stalnaker, 1998; Stalnaker, 1994; Stalnaker, 1996).

Granted, there can be several philosophical and epistemic issues
about the centipede game and its relationship with rationality, but
we will pursue this direction here (Artemov, 2009; Fitting, 2011;
Parikh et al., 2012).

19/78
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Backward Induction Il

However, this issue can also be approached from a dynamic
epistemic perspective.

Recently, it has been shown that in any game tree model M taken
as a PAL model, lim;ational M is the actual subtree computed by
the backward induction procedure where the proposition rational
means that “at the current node, no player has chosen a strictly
dominated move in the past coming here” (van Benthem &
Gheerbrant, 2010). Therefore, the announcement of
node-rationality produces the same result as the backward
induction procedure.

20/78
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However, there seems to be a problem in topological models. The
admissibility of limit models can take more than w steps in
topological models as we have showed earlier. Therefore, the Bl
procedure can take w steps or more.

Theorem

In topological models of games, under the assumption of
rationality, the backward induction procedure can take more than
w steps.

21/78
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Backward Induction IV

Proof sketch

Notice that each tree can easily be converted to a topology by
taking the upward closed sets as opens. By the previous discussion,
we know that backward induction solution can be attained by
obtaining the limit models by publicly announcing the proposition
rationality.

Therefore, by an earlier theorem, stabilization can take more than
w steps. Thus, the corresponding backward induction scheme can
also take more than w steps.

22/78
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What is Paraconsistency?

Basics

The well-studied notion of deductive explosion describes the
situation where every formula can be deduced from an inconsistent
set of formulae, i.e. for all ¢ and 1), we have {¢, ¢} I ¥, where
F denotes logical consequence relation. In this respect, both
“classical” and intuitionistic logics are known to be explosive.
Paraconsistent logic, on the other hand, is the umbrella term for
logical systems where the logical consequence relation F is not
explosive (Priest, 2002).

23/78
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What is Paraconsistency?

Semantics |

We stipulate that extension of any propositional variable will be a
closed set (Goodman, 1981; Mortensen, 2000). In that setting,
conjunction and disjunction works fine for finite intersections and
unions. Nevertheless, negation can be difficult as the complement
of a closed set may not be a closed set, thus may not be the
extension of a formula in the language. For this reason, we use the
symbol ~ that returns the closed complement of a given set.

We can make a similar observation about the boundary points 9(-)
in 0. Now, take x € 9((¢)) where () is a closed set in topology
0. By the above definition, since we have x € 9((¢)), we obtain

x € (p) as () is closed.

Yet, O(()) is also included in (~ ¢) which we have defined as a
closed set. Thus, by the same reasoning, we conclude x € (~ ¢).

24 /78
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What is Paraconsistency?

Semantics |l

Thus, x € (¢ A ~ ) yielding that x = ¢ A ~ ¢. Therefore, in o,
any theory that includes the boundary points will be inconsistent.
In this respect, the model (S, o, V) with the negation symbol ~
will be called a paraconsistent topological model where V is a
valuation function.

25 /78
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What is Paraconsistency?
Continuity |

A recent research program that considers topological modal logics
with continuous functions were discussed in an early work of
Artemov et al., and later by Kremer and Mints (Artemov et al.,
1997; Kremer & Mints, 2005). In these aforementioned works,
they associated continuous functions with temporal modal operator
and discussed the orbits of such functions.

Take two closed set topologies o and ¢’ on a given set S and a
homeomorphism f : (5,0) — (S,0’). We have a simple way to
associate the respective valuations between two models M and M’
which respectively depend on o and ¢’ so that we can have a truth
preservation result. Therefore, define V/(p) = f(V(p)). Then, we
have M = ¢ iff M’ |= .

26 /78
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What is Paraconsistency?

Continuity [l

Theorem

Let M = (S,0,V) and M' = (S5,0’, V') be two paraconsistent
topological models with a continuous f from (S, o) to (S,0’).
Define V'(p) = f(V(p)). Then M, w [= ¢ implies M’ w’ |= ¢ for
all ¢ where w' = f(w).

Theorem

Let M = (S,0,V) and M' = (S5,0’, V') be two paraconsistent
topological models with an open f from (S, 0) to (S,0’). Define
V'(p) = f(V(p)). Then M, w' = ¢ implies M, w |= ¢ for all ¢
where w' = f(w).

27 /78
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Homotopies

Basics |

Let S and S’ be two topological spaces with continuous functions
f,f': S — S’ A homotopy between f and f’ is a continuous
function H: S x [0,1] — S’ such that if s € S, then

H(s,0) = f(s) and H(s,1) = g(s).

Given a model M = (S, 0, V), we call the family of models

{M: = (S: € S,0¢, Vi) }eefo,1] generated by M and homotopic
functions homotopic models. In the generation, we put Vi = f(V).

28 /78
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Homotopies

Basics |l

Theorem

Given two topological paraconsistent models M = (S, 0, V) and
M’ = (S’ o', V') with two continuous functions f,f" : S — S’
both of which respect the valuation: V' = f(V) = (V). If there
is a homotopy H between f and f/, then M and M’ satisfy the
same modal formulae.

Therefore, we can “compare” different updates, and construct the
connection between them.

29/78
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An Epistemic Concept: Robust Knowledge/Belief |

Consider two believers Ann and Bob where Ann is an ordinary
believer while Bob is a religious cleric of the religion that Ann is
following. Therefore, they believe in the same religion and the
same rules of the religion.

However, we feel that Bob believes it more than Ann even though
they believe in exactly the same propositions. In other words, there
is still a difference between their belief. Then, what is this
difference?

30/78
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Applications

An Epistemic Concept: Robust Knowledge/Belief Il

The reason for this is the fact that the extent of Bob's knowledge
is wider than that of Ann's.
In this context, we can ask the following two questions.

1. How much wider is Bob's belief?

2. How is Ann’s belief transformed to Bob's?
These two questions are meaningful. Even if their language cannot
tell us which one has wider knowledge, ontologically, we know that
Bob has more knowledge in some sense even if they agree on every
proposition. Clearly, the reason for that is the fact that Bob

considers more possible worlds for a given proposition which makes
his belief more robust than Ann’s!.

31/78
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An Epistemic Concept: Robust Knowledge/Belief Il

From a dynamic epistemic angle, homeomorphisms and
homotopies can explain this transformation from Ann's beliefs to
Bob's belief with respect to their models.

The parameter mentioned in the definition of homotopies can easily
be considered as a temporal parameter. It help us to give a step by
step account of the transformation between Ann’s and Bob's belief.

We borrowed the term “robust” from Artemov.
32/78
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The Paradox |

The Brandenburg-Keisler paradox (‘BK paradox’, henceforth) is a
two-person self-referential paradox in epistemic game theory
(Brandenburger & Keisler, 2006).

The following configuration of beliefs is impossible:

Paradox
Ann believes that Bob assumes that Ann believes that Bob's
assumption is wrong.

The paradox appears if you ask whether “Ann believes that Bob's
assumption is wrong'".

33/78
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Statement

The Paradox I

Suppose that answer to the above question is 'yes’. Then
according to Ann, Bobs assumption is wrong. But, according to
Ann, Bobs assumption is Ann believes that Bobs assumption is
wrong. However, since the answer to the above question is ‘yes’,
Ann believes that this assumption is correct. So Ann does not
believe that Bobs assumption is wrong. Therefore, the answer to
the above question must be ‘no’. Thus, it is not the case that Ann
believes that Bobs assumption is wrong. Hence Ann believes Bobs
assumption is correct. That is, it is correct that Ann believes that
Bobs assumption is wrong. So, the answer must have been yes.
This is a contradiction (Pacuit, 2007).

Notice that this is essentially a 2-person version of Russell's
Paradox.

34/78
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Model |

Brandenburger and Keisler use belief sets to represent the players’
beliefs.

The model (U?, U?, R?, R?) that they consider is called a belief
structure where R? C U? x UP and RP C UP x V2.

The expression R?(x,y) represents that in state x, Ann believes
that the state y is possible for Bob, and similarly for R®(y,x). We
will put R?(x) = {y : R%(x, y)}, and similarly for R®(y).

At a state x, we say Ann believes P C U? if R?(x) C P.

35/78
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Statement

Model I

A modal logical semantics for the interactive belief structures can
be given as well.

We use two modalities [J and © for the belief and assumption
operators respectively with the following semantics.

x =0 iff Vy e UP.R?(x,y) implies y = ¢
x E=Q¥®yp iff Vye UP.RI(x,y)iffy =¢

36/78
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Model IlI

A belief structure (U?, UP, R? ) R?) is called assumption complete
with respect to a set of predicates 1 on U? and U? if for every
predicate P € 1 on UP, there is a state x € U? such that x
assumes P, and for every predicate @ € 1 on U?, there is a state
y € UP such that y assumes Q.

We will use special propositions U? and U® with the following
meaning: w = U? if w € U?, and similarly for U, Namely, U? is
true at each state for player Ann, and U? for player Bob.

37/78
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Model IV

Brandenburger and Keisler showed that no belief model is
complete for its first-order language. Therefore, “not every
description of belief can be represented” with belief structures
(Brandenburger & Keisler, 2006).

The incompleteness of the belief structures is due to the holes in
the model. A model, then, has a hole at ¢ if either U A pis
satisfiable but ©?°¢ is not, or U? A ¢ is satisfiable but ©%2¢ is not.
A big hole is then defined by using the belief modality [J instead of
the assumption modality ©.

38/78



Paradox
ele] }

Statement

Two Lemmas |

In the original paper, the authors make use of two lemmas before
identifying the holes in the system.

First, let us define a special propositional symbol D with the
following valuation

D={weW:(Vze W)[P(w,z) = -P(z,w)]}.

Lemma

1. If QabUPb s satisfiable, then (J2P[1PaJ2bQbay2 — D s valid.
2. —[02bQP2(U2 A D) is valid.

39/78
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Two Lemmas Il

Theorem (Modal Version)

There is either a hole at U?, a hole at U?, a big hole at one of the
formulas

@baua’ Dab@baua’ DbaDab@baUa

a hole at the formula U? A D, or a big hole at the formula
Oba(U2 A D). Thus, there is no complete interactive frame for the
set of all modal formulas built from U2, U?, and D.

40/78
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Why Non-Well Founded Set Theory?

Concept |

Non-well-founded set theory is a theory of sets where the axiom of
foundation is replaced by the anti-foundation axiom which is due
to Mirimanoff (Mirimanoff, 1917).

Then, decades later, it was formulated by Aczel within graph
theory, and this motivates our approach here (Aczel, 1988). In
non-well-founded (NWF, henceforth) set theory, we can have true
statements such as ‘x € x', and such statements present
interesting properties in game theory. NWF theories are natural
candidates to represent circularity (Barwise & Moss, 1996).

41/78
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Why Non-Well Founded Set Theory?
Games with Non-well-founded Type Spaces |

To the best of our knowledge, the idea of using non-well-founded
sets as Harsanyi type spaces was first suggested by Lismont
(Lismont, 1992), and extended later by Heifetz (Heifetz, 1996).
Heifetz motivated his approach by “making the types an explicit
part of the states’ structure”, and hence obtained a circularity that
enabled him to use non-well-founded sets.

The way he motivated his approach, which is related to our
perspective here, is by arguing that NWF type spaces can be used
“once states of nature and types would be longer be associated
with states of the world, but constitute their very definition.” [ibid,
(his emphasis)].

42 /78
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces Il

There can be argued, at this stage that circularity in a game
theoretical model is not desirable. However, considering the fact
that Harsanyi type spaces represent uncertainty, NWF models
indeed become good candidates to formalize uncertainty.

Here is Heifetz on the very same issue.

43 /78
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Why Non-Well Founded Set Theory?
Games with Non-well-founded Type Spaces Il

Nevertheless, one may continue to argue that a state of
the world should indeed be a circular, self-referantial
object: A state represents a situation of human
uncertainty, in which a player considers what other
players may think in other situations, and in particular
about what they may think there about the current
situation. According to such a view, one would seek a
formulation where states of the world are indeed
self-referring mathematical entities.

(Heifetz, 1996, p. 204).

44 /78
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces IV

On the other hand, NWF set theory is not immune to the problems
that the classical set theory suffers from.

For example, note that Russell's paradox is not solved in NWF
setting, and moreover the subset relation stays the same in NWF
theory (Moss, 2009).

Therefore, we may not expect the BK paradox to disappear in
NWEF setting. Yet, NWF set theory will give us many other tools in
game theory.

45 /78
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Why Non-Well Founded Set Theory?

Definitions

What we call a non-well-founded model is a tuple M = (W, V)
where W is a non-empty non-well-founded set (hyperset, for
short), and V is a valuation. We will use the symbol =7 to
represent the semantical consequence relation in a NWF model
based on (Gerbrandy, 1999).
M,wE=tOlp iff M,wETU A
YwewMvETW = M v ET )
M,w =+ Qlip iff M,wETU A
YWwewM,vETW & My E )

46 /78
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Why Non-Well Founded Set Theory?
Lemmas |

Define Dt ={we W:Vve W.(vew = w ¢ v)}.
We define the propositional variable DT as the propositional
variable with the valuation set D*.

Theorem
There exists a NWF belief structure in which if Q2PUP is
satisfiable, then the formula [J2P[1b2[12bQbaya A —D is also

satisfiable.

Theorem
The formula [12°0P3(U? A D) is satisfiable in some NWF belief
structures.

47 /78
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Why Non-Well Founded Set Theory?

Lemmas I

Yet, we have to be careful here.

This argument does not establish that NWF belief models are
complete. It establishes the fact that they do not have the same
holes as the standard belief models. We will get back to this issue

later on, and give an answer from category theoretical point of
view.

48 /78
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Self-Reference |

Recently, a category theoretical approach has been presented
(Abramsky & Zvesper, 2010).

They focus on the fixed points and extend their analysis to
category theory.

Lawvere's Theorem says that if g : X — VX is surjective, then
every function f : V — V has a fixed point (Lawvere, 1969).
BK paradox occurs if f plays the role of a Boolean negation.
There is an important restriction:

» X should be cartesian closed (actually, should only admit
exponents)

Usually people consider the category of sets Set.

49 /78
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Paraconsistency and Category Theoretical Touch

Co-Heyting: definitions

Let L be a bounded distributive lattice. If there is defined a binary
operation =: L x L — L such that for all x,y,z€ L,

x<(y=2z)iff (x\y) <z,

then we call (L, =) a Heyting algebra.
Dually, if we have a binary operation \ : L x L — L such that

(y\2z) <xiffy <(xVz),

then we call (L,\) a co-Heyting algebra.
We call = implication, \ subtraction.

50/78
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Paraconsistency and Category Theoretical Touch

Co-Heyting: definitions

In Boolean algebras, Heyting and co-Heying algebras give two
different operations. We interpret x = y as =x V y, and x \ y as
XN\ .

In other words, a co-Heyting algebra is a generalization of a
Boolean algebra that allows a generalization in which principium
contradictionis is relaxed.

Closed set topologies are co-Heyting algebras. The topological
paraconsistent negation ~ is defined as ~p =1\ ¢ where 1 is the
top element of the lattice.

51/78
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Paraconsistent BK Paradox

Therefore, even if we have paraconsistent framework. we will have
fixed points.
How:

» Take a co-Heyting algebra - which is a natural candidate for
paraconsistency.

» Observe that it admits exponents: x¥ = x A —y.
» Thus, Lawvere's Theorem applies.

> It will still have fixed points: instead of the Boolean negation,
take co-Heyting negation as the unary operator.

52/78



Paradox
000000
Paraconsistency and Category Theoretical Touch

Topological BK Paradox

Therefore, by following this idea, paraconsistent topological
frameworks can be given. We claim that the BK sentence is
satisfiable in some paraconsistent topological framework where we

use topologies and topological products instead of accessibility
relations.

53 /78
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Paraconsistency and Category Theoretical Touch

NWEF Categories

Category of hypersets is also CCC.

Thus, Lawvere theorem applies.

Therefore, we will have “different” fixed points, thus BK sentences
in the NWF setting.

54 /78
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Strategy Logic

Motivation |

In game theory, strategy for a player is defined as “a set of rules
that describe exactly how (...) [a] player should choose, depending
on how the [other] players have chosen at earlier moves”
(Hodkinson et al., 2000). Nevertheless, this definition of strategies
is static, and presumably is constructed before the game is actually
played.

While people play games, they observe, learn, recollect and update
their strategies during the game as well as adopting deontological
strategies and goals before the game. Players update and revise
their strategies, for instance, when their opponent makes an
unexpected or irrational move.
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Motivation I

For instance, assume that you play a video game by using a
gamepad or a keyboard, and in the middle of the game, one of the
buttons on the gamepad brakes. Hence, from that moment on, you
will not be able to make some moves in the game that are
controlled by that button on the gamepad. This is most certainly
is not part of your strategy. Therefore, you will need to revise your
strategy in such a way that some moves will be excluded from your
strategy from then on. However, for your opponent, that is not the
case as she can still make all the moves available to her.
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Consider a game played between two players given by the set

N = {1,2} and a single admissible set of moves ¥ for both
(Ramanujam & Simon, 2008a; Ramanujam & Simon, 2008b). Let
T = (5,=,50) be a tree rooted at sp, on the set of vertices S. A
partial function =: S x ¥ — S specifies the labeled edges of such
a tree where labels represent the moves at the states. The
extensive form game tree, then, is a pair T = (T, \) where T is a
tree as defined before, and A : S — N specifies whose turn it is at
each state. A strategy y' for a player i € N is a function

p ST — ¥ where S’ = {s€S:\(s) =i}
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For player i and strategy j/, the strategy tree
Ty = (Su; =4, 5, Ay) is the least subtree of T satisfying the
following two conditions:
1. sp€S5,;
2. Forany s € S, if A(s) =i, then there exists a unique s’ € S,
and action a such that s =, s’. Otherwise, if A(s) # i, then
for all s’ with s = s’ for some a, we have s :gu s’
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The most basic constructions in SL are the strategy specifications.
First, for a given countable set X, a set of formulas BF(X) is
defined as follows, for a € X:

BF(X):=xeX |- |eone]|{aey

Let P’ be a countable set of atomic observables for player i, with
P = Pl U P?. The syntax of strategy specifications is given as
follows for ¢ € BF(P'):

Strat'(P") :==[p — a]' | o1+ 02 | 01 - 02
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The specification [ — a]' at player i’s position stands for “play a
whenever ¢ holds". The specification o1 + 02 means that the
strategy of the player conforms to the specification o1 or o> and
01 - 0 means that the strategy of the player conforms to the
specifications o1 and 02. By the abuse of the notation, we will use
<> to denote the equivalence of specifications.

Let M = (T,V) where T =(S,=, 50, ) is an extensive form
game tree as defined before, and V is a valuation function

(V : S — 2P) for the set of propositional variables P. The truth of
a formula ¢ € BF(P) is given as usual for the propositional,
Boolean and modal formulas.
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The notion “strategy u conforms to specification o for player i at
state s” (notation i, s |=; o) is defined as follows, where out,(s)
denotes the unique outgoing edge at s with respect to pu.

p,sEilp—al  iff M,s ¢ implies out,(s) = a

K, s =i o1+ o2 iff  p,sl=io1orp,s =0

W,S =i 0102 iff  p,s=io1and p,s =i o2
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Now, based on the strategy specifications, the syntax of the
strategy logic SL is given as follows:

pl-eleinea|(ae]|(0)izalo~id
for propositional variable p € P, action a € ¥, strategy
o € Strat’(P"), and Boolean formula ¢ over P'. The intuitive
reading of (0); : a is that at the current state the strategy
specification o for player i suggests that the move a can be played.
The intuitive meaning of o ~»; 9 is that following strategy o player
i can ensure 1. The other Boolean connectives and modalities are

defined as usual.
M,s = (a)p iff  3ssuch that s 2§ and M, s’ |= ¢

M,;s k= (0)i:a iff  ae€o(s)
M,s = o~ iff Vs’ such that s =% s" in T|o,
we have M, s’ = ¢ A (turn; — enabled,)
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where o(s) denotes the set of the enabled moves at state s in
strategy o, and =} denotes the reflexive transitive closure of =.
SL has been given a rather complex axiomatization and rules of
inferences. However, it is complete for its semantics (Ramanujam
& Simon, 2008a; Ramanujam & Simon, 2008b).

Yet, it was not known that if SL was decidable or not. Similarly,
the complexity of the satisfiability problem was not known.
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We denote the move restriction by [o!a]’ for a strategy
specification ¢ and action a for player i. Informally, after the move
restriction of o by a, player i will not be able to make an a move.
We incorporate restrictions to SL obtain Restricted Strategy Logic
(RSL), and we incorporate these new dynamic operators at the
level of strategy specifications.

In SL, recall that strategies are functions. Therefore, they only
produce one move per state. However, our dynamic take in
strategies cover more general cases where strategies can offer a set
of moves to the player. Thus, in RSL, we define strategy 1/ as

p' = S — 2% By outr,,i(s) we will denote the set of moves
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returned by i/ at s. Then, the extended syntax of strategy
specifications for player i is given as follows.

Strat'(PY = —w a]' |o+0|o-0|[ola]

Notice that the restrictions affect only the player who gets a move
restriction. In other words, if a is prohibited to player /, it does not
mean that some other player j cannot make an a move.

Once a move is restricted at a state, we will prone the strategy
tree removing the prohibited move from that state on. Therefore,
given u/ : S" — 2% we define the updated strategy relation

pila: §F— 2x—1{ah
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We are now ready to define confirmation of restricted
specifications to strategies. Note that we skip the cases for - and
+ as they are exactly the same.

wskEilp—al  iff  M,s =g implies a € outr,(s)

w's =i [ola)’ iff  a¢outr,(s)and pla,;s =i o
where p!la is the updated strategy tree.
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Here is the the syntax of RSL, which is the same as that of SL:

pl(o)izal~@|eiNp2|(ap]|o~iy

The semantics and the truth definitions of the formulas are defined
as earlier with the exception of strategy specifications for
restrictions. The axiom system of RSL consists of the axioms and
rules of SL together with the following axioms for the added
specification construct:

> (dla)i:c > tun; A—=((0)i:a)A(o)i:c

Theorem
(cla)i:a+ L
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Theorem
The axiom system of RSL is complete with respect to the given
semantics.

Theorem
The model checking problems for SL and RSL are in PSPACE.
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Proof Sketch

We have two different ways to prove it.

One is to translate RSL to CTL (computational tree logic) with a
polynomial translation. The translation is rather immediate, and
considers the two sorted-ness of the language of RSL.

Second is to use a direct method to show that the decision
procedure uses PSPACE amount of space. This is very similar to
the decidability proofs of most modal logics. Namely, scan the
branches of the tree up to some depth determined by the formula,
and then forget about that branch, and scan the next one.
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Thanks!

Thanks for your attention!

Talk slides and the papers are available at:

www .CanBaskent .net/Logic
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