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Topological semantics
provides a richer semantics for

classical as well as non-classical logics.
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A Bit of History



1930s and 40s

A first connection between closure
algebras and modal logic was
made In a pa per In 1938 by ALGEBRAIC POSTULATES AND A GEOMETRIC INTER-

PRETATION FOR THE LEWIS CALCULUS OF

Tsa O- C h en STRICT IMPLICATION

TANG TSAO-CHEN

1. Two further postulates for a Boolean ring with a unit element.

 addition, subtraction, and multiplication are properly defined in

hat the postulates for these operations are
h

:
Reference . Ao i ks pssble, conmuative, and asscatie

B. Multiplication is always possible, associative, and both left- and
right-distributive with respect to addition.

T. Tsao-Chen, “Algebraic < Sunstion sy et

l) xx=x.
Postulates and a Geometric - et by
Interpretation for the Lewis -,,{fl;‘.“,i,f,‘l‘,ii’i‘T,.Zf,“,‘;i";‘.iilffiiﬁl'f‘f‘;;,h
1, For any two elements x and y we have (xy)* =x"y".
Calculus of Strict Implication”, The postlates A-Fs

postulates for the Lewi

here exists an element 1 such that x1=x for every element x in

tained above, may be called the algebraic
-alculus of strict implication.

. g 2.4 tri ing of the symbol +”. A geo aningt
Bulletin of the American may mﬁf:ﬁ«f.:' e ollows Let b a point et in the cucldean

Mathematical Society, vol. 44, pp s S
737_744 1 938 pont, we have then the fllowing proper
! - G. x* is two-valued, that is, x*=1" or 0%,
mle;mndmuanhe pu-(ulaleu\ Fs. This sub-Boolean a |Ikdvnhxlhlh=)mm
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1930s and 40s

Can Ba

1938) STRICT IMPLICATION 731

ALGEBRAIC POSTULATES AND A GEOMETRIC INTER-
PRETATION FOR THE LEWIS CALCULUS OF
STRICT IMPLICATION

TANG TSAO-CHEN

1. Two further postulates for a Boolean ring with a unit element.
If addition, subtraction, and multiplication are properly defined in
logic, it may be shown* that the postulates for these operations are
identical with those in a ring, in which every element is idempotent,
satisfying the postulate x; h a ring is called a Boolean ring.
The postulates for a Boolean ring with a unit element are therefore
the following

A. Addition is always possible, commulative, and associative.

B. Multiplication is always possible, associative, and both left- and
right-distributive with respect to addition.

C. Subtraction is always possible.

D. =z,
E. There exists an element 1 such that x1=x for every element x in
the ring.

Here we shall introduce a new operation, represented by x",
which satisfies the following two further postulates:
- For coery element s there exists an clement ° such that x"x ="
. For any two elements x and y we have (xy)

The postulates A-F;, obtained above, may be called the algebrai
postulates for the Lewis calculus of strict implication.

2. A geometric meaning of the symbol +”. A geometric meaning
may be attached to x” as follows: Let x be a point set in the euclidean

See M. H.Stone.The theoryof rpresetaions for Bolon lgbras, Tramactions
..nm.w.my vol. 40 (1936), pp. 3

t Another geometric meaning e may be obtained by assuming 1° to be any
one fixed point or any set of fixed points (fnite or infinite in number and continuous
or discontinuous in character) and setting x*=x1°, If we assume that 1% is a fixed
point, we have then the following property:

G x* s two-valued, that is, x=1% or 0%,
which is independent of AF,. Thi
laten A<G does not become the ordinary two-valued Boolean algebra, unless we as-
sume further that x s two-value
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3. A geometric interpretation of Lewis’ possibility functions. When
P is a proposition, Les an undefined idea Op, which is
read “p is possible” md may be called the possibility function of p,
Now, if a class « be Ox must have a corresponding meaning
is obtained from the following definition:

DEFINITION. Ox=1—(1-x)".

By means of the definition of ~x, we obtain ~x=1-2; and we
have the following theorems:

THEOREM 1. Ox is the closure of x.

THEOREM 2. ~Ox = (1—2)" is the exterior of x.

-

OREM 3. Orvx= 1= is the closure of the complement of x.
THEOREM 4. ~~a=x" is the interior of x.

On the basis of the postulates A-F we may then prove abstractly
the following theorems:

THEOREM 5. 0°=0 and ~O~0. = .0; that is, the interior of the null
dlass is @ null dlass.

THEOREM 6. ~Or~vx.~Ox: =.0, and x™(~z)*=0; that is, if x is
a class, then the interior and the exterior of x have no point in common

DEFINITION, &/ =1~

—(~x)", that is, =/ is the frontier of .
THEOREM 7. &f = (~x)/, that is, x and ~x have the same frontier.
THEOREM 8. 2f +2°+(~x) B (~O~) +(~ox) =1; that

is, the frontier, the interior, and the exterior of x form the whole plane.

THEOREM 9. Ox. = .2/ +x= and Ox. = .x/+(~O~x); that is, OF
is the sum of the frontier and the interior of x.

THEOREM 10, G, = /4 (~x)° and O~z.
is, O~ s the sum of the frontier and the exterior of x.

3/ ~Ox; tha

THEOREM 11, x(~x)" =0 and x.~Ox: = .0; that is, the class x and
its exterior have no point in common.




1930s and 40s

Tarski and McKinsey's paper is T
often considered a landmark. TR ALGKRA 07 TOPOLOGT

. . (Received April 23, 1043)
In that paper they identified the There are various connectons between modern alebra. and topology. Tn
both these branches of mathematics, in the first place, a peculiarly strong

. . tendency obtains, to define the object of investigation by means of abstract

a [ ge b raic an d mo d a[ lo g| C al postulates. In the domain of combinatorial topology, moreover, methods and
results of algebra are invariably applied. Such applications have occurred much

L. i less frequently in the field of point-set topology. But on the other hand, various
ua l | t| es Of t h e tO 0 l 0giC al fragments and arguments of point-set topology have themselves an algebraic

q p g character; and, in view of the simplicity and elegance of an algebraic presenta-
tion, several topologists have attempted to present in this way a sizeable portion
of their subject.'

C l osure ope rator. The idea therefore suggests itself, of creating an algebraic apparatus adequate
for the treatment of portions of point-set topology. In the present paper we
attempt to make a contribution to such a development. For this purpose we
shall set up the foundation of a new algebraic caleulus, which could be regarded
as a sort of algebra of topology; and we shall study both the internal algebraic
properties of this caleulus and its relation to topology as ordinarily conceived.
In particular our methods will enable us to settle a problem regarding the
axiomatic foundations of topology which has remained open for a rather long
time.

In §1 we shall present postulates for the sort of algebra of topology under
consideration. This algebra, which we shall call closure algebra, is arrived at
R efe re n Ce by adding to the postulates for Boolean algebra S:)II\B additional postulates which

express the properties of the closure operation’ usually assumed in topology.

San o intancs thefllwing: F. Riees, Suigkeubeprifund abiakis Heagenlbe,

J. C. C. McKinsey and A. Tarski, o P e e

plane analysis situs, Transactions of the American Mnnem-mﬂ Snmety, wvol. 17 (1916),

u ” o 911643 . W- Chitkenden, On gl lopelgy and te relatin o o properties o b
The A gebra o To pology The o of ol odimuou funcions i (e ropertisof e tpaes, Trsuaseions of e Ameriean

’ Mathematical Society, vol. 31 (1929), pp. 200-321; 8. T. Sanders, Jr., Derived sets and their

complements, Bulletin of the American Mnhemnucnl ty, vol. 42 UDJG). pp. 577-584;

o he Amercon Muthemaica

' e Stopher, Cyelic relations in point set lh‘mv, lletin of the
Annals of Mathematics, vol. 45 e e e e e pcaes ot s st
! ’ tions, Bulltun of the American Mathematical Society, vol. 46 (1939), pp. 758-762; M. Ward,
The closure operations of a laltice, these Annals, vol. 43 (1942), pp. 191-196. [Funl\e. refer-
ences are to be found in P. Alexandroff and H. Hopf, Topologie I, Leipzig, 1%5 One. nl the
pp. 141-191, 1944. et o i ooy s o o v ot
! was 8. Janiszewski.
* Similar methods can be applied to other topological notions which cannot be alge-
defined in terms of closure. Thus we could develop analogously an algebra
i1 s s i oot 1 s e o 1 6t

14
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Classical Logic of Topologies



Predating Kripke

Topological and algebraic semantics predates Kripke semantics by a
couple of decades.

Kripke semantics is more popular because
- itis simpler,
- itis used by philosophers and computer scientists more often,

- it does not require an advanced mathematical background.

Yet, none of these reasons gives us an a priori reason to resort to
Kripke semantics.

A lot is lost in translation!

Can Baskent — Modal Topologies: from classical to non-classical



Basics: Topologies

Open Set Definition

The structure (S, o) is called a topological space if it satisfies the
following conditions.

1. Secand € o,
2. o is closed under arbitrary unions and finite intersections.

Alternatively,

Closed Set Definition

The structure (T, 7) is called a topological space if it satisfies the
following conditions.

1. Terand e,
2. 7 is closed under finite unions and arbitrary intersections.
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Basics: Opens and Closeds

9§ Collections o and 7 are called topologies.

9 The elements of ¢ are called open sets whereas the elements of ~
are called closed sets.

9 Asetisopen if its complement in the same topology is closed and
vice versa.
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9 Let us consider the language of propositional modal logic with the
modality ¢, and define the dual modality (I in the usual sense.

9 In topological semantics, the modal operator O for necessitation
corresponds to the topological interior operator Int(-) where Int(0O) is
the largest open set contained in set O.

9 Furthermore, one can dually associate the topological closure
operator Clo(+) with the possibility modal operator ¢ where the
closure Clo(0) of a given set O is the smallest closed set that
contains O.
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9 In the classical setting, modalities necessarily produce topological
entities such as open or closed sets.

9 However, the extension of Booleans may or may not be
topological entities. For example, negation of an open set is not
necessarily an open set. Therefore, the negation operator may not
produce an open or closed set.
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Basics: Derivative

9 Apoints e Sis called a limit point of A C S if for each open
neighborhood U of s, the set SN (U — {s}) is nonempty.

9 The set of limit points of A is called the derivative of A and is
denoted by d(A).

9 Then Clo(A) = AU d(A).

Therefore, s € Clo(A) if and only if UNA is nonempty for each open
neighborhood U of s.
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Basics: Co-derivative

9 Lett(A) =S —d(S—A). We call t(A) the co-derivative of A.

9 Then, s € t(A) if and only if there exists an open neighborhood U
of s such that U C AU {s}.
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Basics: Derivative and Co-derivative

For A C S, we have the following for the derivative and co-derivative
operators.

- d(AUB) =d(A)ud(B)
- t(ANB) = t(A) N t(B)

-ACAUd(A
- ANt(A) CA

"~
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Basics: Derivative and Co-derivative

For A C S, we have the following for the derivative and co-derivative
operators.

- d(AUB) =d(A)ud(B)
- t(ANB) = t(A) N t(B)

-ACAUd(A
- ANt(A) CA

"~

Note the error in the “Modal Logic of Space” paper!

Can Baskent — Modal Topologies: from classical to non-classical



Some Results: S4

The logic S4 is defined by the KT4 axioms and the rules of modus
ponens and necessitation which translate into the following axioms.

- OT the whole space is open

- (OpAOg) < O(pAQ) the open sets are closed under finite
intersections

- Op — 0O0p the interior operator is idempotent
-Op—p the interior of any set is contained in the set
Reference

Johan van Benthem & Guram Bezhanishvili, “Modal Logics of Space”
in M. Aiello & Pratt-Hartmann & van Benthem (eds), Handbook of
Spatial Logics, Springer, 2007.
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Some Results: S4

The logic S4 is defined by the KT4 axioms and the rules of modus
ponens and necessitation which translate into the following axioms.

Let (S, o) be a topology and A C S.

- aT Int(S) =S
- (OpAOqg) < O(pAQ) Int(A N B) = Int(A) N Int(B)
- Op—0O0p Int(A) C Int(Int(A))
-Op—p Int(A) C A
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Some Results: S4 and Completeness

9 In 1944 McKinsey and Tarski proved that S4 is complete for any
dense-in-itself (that is no isolated points) metric separable space.

9 Thus, S4 is also the logic of any Euclidean space R" with the
standard topology.

9 Mints proved completeness of S4 for the Cantor space in 1998.
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Some Results: S4 and Completeness

9 Sé4is the logic of the class of all topological spaces.
9 S4 is the logic of the class of all finite topological spaces.

9 S4 has the effective finite model property with respect to the class
of topological spaces.
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Some Results: Definability

A class of topological spaces K is topologically definable if there
exists a set of modal formulas I such that for each topological space
X, we have X € Kiff X [=T.

Moroever,
- neither compactness nor connectedness is topologically
definable,

- none of the separation axioms Tg, Ty, Ty, T2, T3, T3%, T., Ts and Tg
is topologically definable,

Reference

David Gabelaia, “Modal Definability in Topology”, Masters Thesis,
Institute for Logic, Language and Computation, University of
Amsterdam, 2001.
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Some Results: Definability

9 The formula p — Op (or equivalently Op — p) topologically
defines the class of discrete spaces, as it renders every set as open.

9 The formula ¢Op — OOp topologically defines the class of
extremally disconnected spaces where the closure of each open is
clopen.
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Some Results: Derivative

9| We can re-interpret ¢ as the derivative operator.

9 The semantics of this re-interpretation is given as follows.

cSsEQp Iff VUeo(selU — FtelU—{s}tEy)
-sEOp iff 3Ueo(selU A VteU—{s},tEy)

9 Let wK4 denote the modal logic K + (p A Op) — OOp.
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Some Results: Derivative

9 wK4 is sound and complete with respect to the class of all weakly
transitive frames where (WRv A VRU A W # u) — WRu).

9 wK4 is sound and complete with respect to the class of all weakly
transitive frames.

9 wK4 has the finite model property.

9 wK4 is complete with respect to finite rooted irreflexive
wK4-frames where a frame is called rooted if there exists r (the root)
such that rRw for every w # r.
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Some Results: Derivative

9 For a topological space (S, o), define Ry on S by setting sR4t iff
s € d(t). Then, (S, Rq) is an irreflexive wK4-frame.

9| For a nonempty set X, there is a 1-1 correspondence between

- Alexandroff topologies on X,
- Reflexive and transitive relations on X,
- Irreflexive and weakly transitive relations on X.
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Some Results: Derivative

9 Let us define a translation © between the formulas to establish a
connection between S4 and wK&.

o(p) =
Sl 99): O()
O(p N Y) = O(p) AO(Y)
O(0p) = O(p) A B(v) AOO(p)

9 Let K be a class of topological spaces and (S, o) € K. Then,
(S,0) E ¢ iff (S,0) =g ©(¢), where =4 represents the derivative
interpretation of modal logic.
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Non-Classical Logic of Topologies




The Jump towards Non-Classicity

Notice that the extensions of modal formulas are guaranteed to have
a topological extensions in classical logics. Topological semantics for
modal logic therefore works with both topological and
non-topological sets.

We can take one step further, and suggest that extension of any
propositional variable will be an open set.

Reference
G. Mints, “A short introduction to intuitionistic logic”, Kluwer, 2000.

Reference
C. Mortensen, “Topological Separation Principles and Logical
Theories”, Synthese, Vol. 125, No. 1/2, pp. 169- 178, 2000.
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Basics

In this case the extension of any propositional variable p will be an
open set. This works well with finite conjunctions and disjunctions as

they all are going to be open.

What about the negation then?
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Basics

In this case the extension of any propositional variable p will be an
open set. This works well with finite conjunctions and disjunctions as
they all are going to be open.

What about the negation then?

We will interpret negation as the “open complement”: the largest
open set contained in the set theoretic complement. That is the
interior of the complement.

This procedure produces an intuitionistic logic with a Heyting
algebra.
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Basics

We can dualise this.

We can interpret negation as the “closed complement”: the smallest
closed set containing in the set theoretic complement. That is the
closure of the complement.

This procedure produces a paraconsistent logic with a co-Heyting or
Brouwerian algebra.
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Basics

Let p be true at set K. If we impose that K is a closed set and the
negation operator works as a closed complement to obtain a

paraconsistent logic, then —p will be true at the Clo(K) — closure of
the set theoretical complement of K.

Interestingly, K N Clo(K) # (. This is equal to the boundary of K,
denoted as oK.

In the intuitionistic case 9K may be empty as K and Int(K) may not
intersect, when K is open.

In the paraconsistent case, K N Clo(K) = oK.
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Basics

Let p be true at set K. If we impose that K is a closed set and the
negation operator works as a closed complement to obtain a

paraconsistent logic, then —p will be true at the Clo(K) — closure of
the set theoretical complement of K.

Interestingly, K N Clo(K) # (. This is equal to the boundary of K,
denoted as oK.

In the intuitionistic case 9K may be empty as K and Int(K) may not
intersect, when K is open.

In the paraconsistent case, K N Clo(K) = IK.

Question: For what sets X, 9X is always empty?
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The Philosophy of Non-Classical Topologies

How to interpret opens and closeds within logic is an important
problem.

Just because it is possible to identify them with closure algebras
does not immediately entail that they are the true objects of
intuitionistic or paraconsistent logics.
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Some Results

Aformula ¢ is called “connected” in a model M, if for any two
formulas o and a, with nonempty closed (or dually, open)
extensions in M, if o = oy V a, then aq A ap will have a non-empty
extension. We will call a theory connected if it is generated by a set
of connected formulas.

Reference

CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023-4040, 2013.

Can Baskent — Modal Topologies: from classical to non-classical



Some Results

- A paraconsistent topological model with no connected formulas
cannot have true contradictions.

- A paraconsistent topological model with totally disconnected
topology cannot be inconsistent.

- Every connected formula is satisfiable in some connected
(classical) topological space.

Reference

CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023-4040, 2013.
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Some Results

- Every connected theory in a paraconsistent topological logic is
inconsistent. Moreover, every connected theory in a
paracomplete topological logic is incomplete.

- In a paraconsistent topological model, the only subtheory that is
not inconsistent is the empty theory.

Reference
CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023-4040, 2013.
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Some Results

| gave topological models for some other non-classical and
paraconsistent logics.

Reference
CB, “Public Announcement Logic in Geometric Frameworks”,
Fundamenta Informaticae, vol. 118, no. 3, pp. 207-223, 2012.

Reference

CB, “Topological Semantics for da Costa Paraconsistent Logics C,,
and C3", in New Directions in Paraconsistent Logic, Edited by J.-Y.
Beziau, M. Chakraborty and S. Dutta, pp. 427-444, Springer, 2016.
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Conclusion




Future Work

Topological models are rich.

It remains a major project to identify the topological qualities of
paraconsistent models in detail.

What are the topologies of reflexive-insensitive logics?

How can we develop a logic for derivative operators or regular sets?
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Topological semantics
provides a richer semantics for

classical as well as non-classical logics.
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Thank you!

Talk slides are available at my website

CanBaskent.net/Logic


https://canbaskent.net/logic
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