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In a Nutshell

Topological semantics

provides a richer semantics for

classical as well as non-classical logics.
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A Bit of History



1930s and 40s

A first connection between closure
algebras and modal logic was
made in a paper in 1938 by
Tsao-Chen.

Reference
T. Tsao-Chen, “Algebraic
Postulates and a Geometric
Interpretation for the Lewis
Calculus of Strict Implication”,
Bulletin of the American
Mathematical Society, vol. 44, pp.
737-744, 1938.
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1930s and 40s
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1930s and 40s

Tarski and McKinsey’s paper is
often considered a landmark.
In that paper they identified the
algebraic and modal logical
qualities of the topological
closure operator.

Reference
J. C. C. McKinsey and A. Tarski,
“The Algebra of Topology”, The
Annals of Mathematics, vol. 45,
pp. 141-191, 1944.
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Classical Logic of Topologies



Predating Kripke

Topological and algebraic semantics predates Kripke semantics by a
couple of decades.

Kripke semantics is more popular because

• it is simpler,
• it is used by philosophers and computer scientists more often,
• it does not require an advanced mathematical background.

Yet, none of these reasons gives us an a priori reason to resort to
Kripke semantics.

A lot is lost in translation!
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Basics: Topologies

Open Set Definition
The structure (S, σ) is called a topological space if it satisfies the
following conditions.

1. S ∈ σ and ∅ ∈ σ,
2. σ is closed under arbitrary unions and finite intersections.

Alternatively,

Closed Set Definition
The structure (T, τ) is called a topological space if it satisfies the
following conditions.

1. T ∈ τ and ∅ ∈ τ ,
2. τ is closed under finite unions and arbitrary intersections.
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Basics: Opens and Closeds

¶ Collections σ and τ are called topologies.

¶ The elements of σ are called open sets whereas the elements of τ
are called closed sets.

¶ A set is open if its complement in the same topology is closed and
vice versa.

Can Başkent – Modal Topologies: from classical to non-classical 8/34



Basics: Logic

¶ Let us consider the language of propositional modal logic with the
modality ♦, and define the dual modality � in the usual sense.

¶ In topological semantics, the modal operator � for necessitation
corresponds to the topological interior operator Int(·) where Int(O) is
the largest open set contained in set O.

¶ Furthermore, one can dually associate the topological closure
operator Clo(·) with the possibility modal operator ♦ where the
closure Clo(O) of a given set O is the smallest closed set that
contains O.
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Basics: Logic

¶ In the classical setting, modalities necessarily produce topological
entities such as open or closed sets.

¶ However, the extension of Booleans may or may not be
topological entities. For example, negation of an open set is not
necessarily an open set. Therefore, the negation operator may not
produce an open or closed set.
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Basics: Derivative

¶ A point s ∈ S is called a limit point of A ⊆ S if for each open
neighborhood U of s, the set S ∩ (U− {s}) is nonempty.

¶ The set of limit points of A is called the derivative of A and is
denoted by d(A).

¶ Then Clo(A) = A ∪ d(A).

Therefore, s ∈ Clo(A) if and only if U ∩ A is nonempty for each open
neighborhood U of s.
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Basics: Co-derivative

¶ Let t(A) = S− d(S− A). We call t(A) the co-derivative of A.

¶ Then, s ∈ t(A) if and only if there exists an open neighborhood U
of s such that U ⊆ A ∪ {s}.
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Basics: Derivative and Co-derivative

For A ⊆ S, we have the following for the derivative and co-derivative
operators.

• d(A ∪ B) = d(A) ∪ d(B)
• t(A ∩ B) = t(A) ∩ t(B)
• A ⊆ A ∪ d(A)
• A ∩ t(A) ⊆ A

Note the error in the “Modal Logic of Space” paper!
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Some Results: S4

The logic S4 is defined by the KT4 axioms and the rules of modus
ponens and necessitation which translate into the following axioms.

• �> the whole space is open
• (�p ∧�q) ↔ �(p ∧ q) the open sets are closed under finite

intersections
• �p→ ��p the interior operator is idempotent
• �p→ p the interior of any set is contained in the set

Reference
Johan van Benthem & Guram Bezhanishvili, “Modal Logics of Space”
in M. Aiello & Pratt-Hartmann & van Benthem (eds), Handbook of
Spatial Logics, Springer, 2007.
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Some Results: S4

The logic S4 is defined by the KT4 axioms and the rules of modus
ponens and necessitation which translate into the following axioms.

Let (S, σ) be a topology and A ⊆ S.

• �> Int(S) = S
• (�p ∧�q) ↔ �(p ∧ q) Int(A ∩ B) = Int(A) ∩ Int(B)
• �p→ ��p Int(A) ⊆ Int(Int(A))
• �p→ p Int(A) ⊆ A

Can Başkent – Modal Topologies: from classical to non-classical 15/34



Some Results: S4 and Completeness

¶ In 1944 McKinsey and Tarski proved that S4 is complete for any
dense-in-itself (that is no isolated points) metric separable space.

¶ Thus, S4 is also the logic of any Euclidean space Rn with the
standard topology.

¶ Mints proved completeness of S4 for the Cantor space in 1998.
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Some Results: S4 and Completeness

¶ S4 is the logic of the class of all topological spaces.

¶ S4 is the logic of the class of all finite topological spaces.

¶ S4 has the effective finite model property with respect to the class
of topological spaces.
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Some Results: Definability

A class of topological spaces K is topologically definable if there
exists a set of modal formulas Γ such that for each topological space
X, we have X ∈ K iff X |= Γ.

Moroever,

• neither compactness nor connectedness is topologically
definable,

• none of the separation axioms T0, Td, T1, T2, T3 , T3 12 , T4 , T5 and T6
is topologically definable,

Reference
David Gabelaia, “Modal Definability in Topology”, Masters Thesis,
Institute for Logic, Language and Computation, University of
Amsterdam, 2001.
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Some Results: Definability

¶ The formula p→ �p (or equivalently ♦p→ p) topologically
defines the class of discrete spaces, as it renders every set as open.

¶ The formula ♦�p→ �♦p topologically defines the class of
extremally disconnected spaces where the closure of each open is
clopen.
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Some Results: Derivative

¶ We can re-interpret ♦ as the derivative operator.

¶ The semantics of this re-interpretation is given as follows.

• s |= ♦ϕ iff ∀U ∈ σ.(s ∈ U → ∃t ∈ U− {s}, t |= ϕ)

• s |= �ϕ iff ∃U ∈ σ.(s ∈ U ∧ ∀t ∈ U− {s}, t |= ϕ)

¶ Let wK4 denote the modal logic K + (p ∧�p) → ��p.
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Some Results: Derivative

¶ wK4 is sound and complete with respect to the class of all weakly
transitive frames where (wRv ∧ vRu ∧ w 6= u) → wRu).

¶ wK4 is sound and complete with respect to the class of all weakly
transitive frames.

¶ wK4 has the finite model property.

¶ wK4 is complete with respect to finite rooted irreflexive
wK4-frames where a frame is called rooted if there exists r (the root)
such that rRw for every w 6= r.
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Some Results: Derivative

¶ For a topological space (S, σ), define Rd on S by setting sRdt iff
s ∈ d(t). Then, (S,Rd) is an irreflexive wK4-frame.

¶ For a nonempty set X, there is a 1-1 correspondence between

• Alexandroff topologies on X,
• Reflexive and transitive relations on X,
• Irreflexive and weakly transitive relations on X.
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Some Results: Derivative

¶ Let us define a translation Θ between the formulas to establish a
connection between S4 and wK4.

Θ(p) = p
Θ(¬ϕ) = ¬Θ(ϕ)

Θ(ϕ ∧ ψ) = Θ(ϕ) ∧Θ(ψ)

Θ(�ϕ) = Θ(ϕ) ∧Θ(ϕ) ∧�Θ(ϕ)

¶ Let K be a class of topological spaces and (S, σ) ∈ K . Then,
(S, σ) |= ϕ iff (S, σ) |=d Θ(ϕ), where |=d represents the derivative
interpretation of modal logic.
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Non-Classical Logic of Topologies



The Jump towards Non-Classicity

Notice that the extensions of modal formulas are guaranteed to have
a topological extensions in classical logics. Topological semantics for
modal logic therefore works with both topological and
non-topological sets.

We can take one step further, and suggest that extension of any
propositional variable will be an open set.

Reference
G. Mints, “A short introduction to intuitionistic logic”, Kluwer, 2000.

Reference
C. Mortensen, “Topological Separation Principles and Logical
Theories”, Synthese, Vol. 125, No. 1/2, pp. 169- 178, 2000.
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Basics

In this case the extension of any propositional variable p will be an
open set. This works well with finite conjunctions and disjunctions as
they all are going to be open.

What about the negation then?

We will interpret negation as the “open complement”: the largest
open set contained in the set theoretic complement. That is the
interior of the complement.

This procedure produces an intuitionistic logic with a Heyting
algebra.
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Basics

We can dualise this.

We can interpret negation as the “closed complement”: the smallest
closed set containing in the set theoretic complement. That is the
closure of the complement.

This procedure produces a paraconsistent logic with a co-Heyting or
Brouwerian algebra.
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Basics

Let p be true at set K . If we impose that K is a closed set and the
negation operator works as a closed complement to obtain a
paraconsistent logic, then ¬p will be true at the Clo(K) — closure of
the set theoretical complement of K .

Interestingly, K ∩ Clo(K) 6= ∅. This is equal to the boundary of K ,
denoted as ∂K .

In the intuitionistic case ∂K may be empty as K and Int(K) may not
intersect, when K is open.

In the paraconsistent case, K ∩ Clo(K) = ∂K .

Question: For what sets X, ∂X is always empty?

Can Başkent – Modal Topologies: from classical to non-classical 27/34



Basics

Let p be true at set K . If we impose that K is a closed set and the
negation operator works as a closed complement to obtain a
paraconsistent logic, then ¬p will be true at the Clo(K) — closure of
the set theoretical complement of K .

Interestingly, K ∩ Clo(K) 6= ∅. This is equal to the boundary of K ,
denoted as ∂K .

In the intuitionistic case ∂K may be empty as K and Int(K) may not
intersect, when K is open.

In the paraconsistent case, K ∩ Clo(K) = ∂K .

Question: For what sets X, ∂X is always empty?

Can Başkent – Modal Topologies: from classical to non-classical 27/34



The Philosophy of Non-Classical Topologies

How to interpret opens and closeds within logic is an important
problem.

Just because it is possible to identify them with closure algebras
does not immediately entail that they are the true objects of
intuitionistic or paraconsistent logics.
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Some Results

A formula ϕ is called “connected” in a model M, if for any two
formulas α1 and α2 with nonempty closed (or dually, open)
extensions in M, if ϕ ≡ α1 ∨ α2, then α1 ∧ α2 will have a non-empty
extension. We will call a theory connected if it is generated by a set
of connected formulas.

Reference
CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023–4040, 2013.
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Some Results

• A paraconsistent topological model with no connected formulas
cannot have true contradictions.

• A paraconsistent topological model with totally disconnected
topology cannot be inconsistent.

• Every connected formula is satisfiable in some connected
(classical) topological space.

Reference
CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023–4040, 2013.
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Some Results

• Every connected theory in a paraconsistent topological logic is
inconsistent. Moreover, every connected theory in a
paracomplete topological logic is incomplete.

• In a paraconsistent topological model, the only subtheory that is
not inconsistent is the empty theory.

Reference
CB, “Some topological properties of paraconsistent models”,
Synthese, vol. 190, pp. 4023–4040, 2013.
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Some Results

I gave topological models for some other non-classical and
paraconsistent logics.

Reference
CB, “Public Announcement Logic in Geometric Frameworks”,
Fundamenta Informaticae, vol. 118, no. 3, pp. 207-223, 2012.

Reference
CB, “Topological Semantics for da Costa Paraconsistent Logics Cω
and C∗ω”, in New Directions in Paraconsistent Logic, Edited by J.-Y.
Beziau, M. Chakraborty and S. Dutta, pp. 427-444, Springer, 2016.
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Conclusion



Future Work

Topological models are rich.

It remains a major project to identify the topological qualities of
paraconsistent models in detail.

What are the topologies of reflexive-insensitive logics?

How can we develop a logic for derivative operators or regular sets?
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In a Nutshell

Topological semantics

provides a richer semantics for

classical as well as non-classical logics.
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Thank you!

Talk slides are available at my website

CanBaskent.net/Logic

https://canbaskent.net/logic
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