Paraconsistency and Topological Semantics

Can BAŞKENT

The Graduate Center of the City University of New York cbaskent@gc.cuny.edu www.canbaskent.net

Conference on Non-Classical Logics: Theory and Applications Nicolaus Copernicus University - Toruń September 17th, 2010

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

	Topology	Paraconsistent Topology	Conclusion	
00	00000	000000	00	0

Outlook of the Talk

- What is Paraconsistency?
- Topological Semantics
- Paraconsistency and Topology
- Conclusion

Paraconsistency	Topology	Paraconsistent Topology	Conclusion	
•O		000000		

Paraconsistency

The well-studied notion of deductive explosion describes the situation where any formula can be deduced from an inconsistent set of formulae, i.e. for all formulae φ and ψ , we have $\{\varphi, \neg \varphi\} \vdash \psi$, where \vdash denotes the classical logical consequence relation.

In this respect, both "classical" and intuitionistic logics are known to be explosive. Paraconsistent logic, on the other hand, is the umbrella term for logical systems where the logical consequence relation \vdash is not explosive. For example, in this respect, Aristotelian syllogism is paraconsistent (Priest, 2002).

CUNY

< ロ > < 同 > < 回 > < 回 >

Paraconsistency	Topology	Paraconsistent Topology	Conclusion	
00	00000	000000	00	0

Motivation for Paraconsistency

Motivation for paraconsistency is usually this: we may be in a situation where our theory/information is inconsistent, but we still would like to make inference sensibly.

There are several class of situations where paraconsistency could be thought of a natural approach.

- Computer databases
- Scientific theories
- Law
- Counterfactuals
- Various human behavior

(Priest, 2002).

Topology	Paraconsistent Topology	Conclusion	
00000	000000		

The First Semantics for Modal Logics

The history of the topological semantics of (modal) logics can be traced back to early 1920s making it the first semantics for variety of modal logics (Goldblatt, 2006). The major revival of the topological semantics of modal logics and its connections with algebras, however, is due to McKinsey and Tarski (McKinsey & Tarski, 1946; McKinsey & Tarski, 1944).

(日) (同) (三) (

	Topology	Paraconsistent Topology	Conclusion	
00	0000	000000	00	0

What is a Topology?

Definition

The structure $\langle S, \tau \rangle$ is called a topological space if it satisfies the following conditions.

- 1. $S \in \tau$ and $\emptyset \in \tau$
- 2. τ is closed under arbitrary unions and finite intersections

Definition

The structure $\langle S, \sigma \rangle$ is called a topological space if it satisfies the following conditions.

- 1. $S \in \sigma$ and $\emptyset \in \sigma$
- 2. σ is closed under finite unions and arbitrary intersections

CUNY

< ロ > < 同 > < 回 > < 回 >

	Topology	Paraconsistent Topology	Conclusion	
00	00000	000000	00	0

What is a Topology

Collections σ and τ are called topologies.

The elements of τ are called *open* sets whereas the elements of σ are called *closed* sets. Therefore, a set is open if its complement in the same topology is a closed set and vice versa.

Topology 000●0	Paraconsistent Topology 000000 000000	Conclusion 00	

Functions in a Topology

Two topological spaces are called *homeomorphic* if there is function from one to the other which is a continuous bijection with a continuous inverse. Moreover, two continuous functions are called *homotopic* if there is a continuous deformation between the two.

CUNY

Topology	Paraconsistent Topology	Conclusion	
00000	000000		

Topological Semantics

In topological semantics, the modal operator for necessitation corresponds to the topological *interior* operator Int where Int(O) is the largest open set contained in O. Furthermore, one can dually associate the topological closure operator Clo with the possibility modal operator \Diamond where the closure Clo(O) of a given set O is the smallest closed set that contains O.

Let us set a piece of notation and terminology. The extension, i.e. the points at which the formula is satisfied, of a formula φ in the model M will be denoted as $[\varphi]$. Thus, we will have $[\Box \varphi] = Int([\varphi])$. Similarly, we will put $[\Diamond \varphi] = Clo([\varphi])$.

CUNY

<ロ> (四) (四) (三) (三)

	Topology 00000	Paraconsistent Topology ●00000 000000	Conclusion 00	
Basics				

History

Use of topological semantics for paraconsistent logic is not new. To our knowledge, the earliest work discussing the connection between inconsistency and topology goes back to Goodman (Goodman, 1981)¹.

In a recent work, Priest discussed the dual of the intuitionistic negation operator and considered that operator in topological framework (Priest, 2009). Similarly, Mortensen discussed topological seperation principles from a paraconsistent and paracomplete point of view and investigated the theories in such spaces (Mortensen, 2000). Similar approaches from modal perspective was discussed by Béziau, too (Béziau, 2005).

CUNY

	Topology 00000	Paraconsistent Topology 0●0000 000000	Conclusion 00	
Pasies				

How to Connect?

Recall:
$$[\Box \varphi] = Int([\varphi])$$
 and $[\Diamond \varphi] = Clo([\varphi])$.

Stipulate that:

extension of *any* propositional variable will be an open set, or the extension of *any* propositional variable will be an open set (Mortensen, 2000).

	Topology	Paraconsistent Topology	Conclusion	
		000000 000000		
Basics				

Problem of Negation

Negation can be difficult as the complement of an open set is not generally an open set, thus may not be the extension of a formula in the language. For this reason, we will need to use a new negation symbol \sim that returns the open complement (interior of the complement) of a given set.

A similar idea can also be applied to closed sets where we assume that the extension of any propositional variable will be a closed set. In order to be able to avoid a similar problem with the negation, we stipulate yet another negation operator which returns the closed complement (closure of the complement) of a given set. In this setting, we will the symbol \sim that returns the closed complement of a given set.

< ロ > < 同 > < 回 > < 回 >

CUNY

	Topology	Paraconsistent Topology	Conclusion	
		000000 000000		
Destas				

Incomplete Topological Theories

Let us consider the boundary $\partial(\cdot)$ of a set X where $\partial(X)$ is defined as $\partial(X) := \operatorname{Clo}(X) - \operatorname{Int}(X)$. Consider now, for a given formuala φ , the boundary of its extension $\partial([\varphi])$ in the topology of opens τ . Let $x \in \partial([\varphi])$. Since $[\varphi]$ is open, $x \notin [\varphi]$. Similarly, $x \notin [\sim \varphi]$ as the open complement is also open by definition. Thus, neither φ nor $\sim \varphi$ is true at the boundary. Thus, in τ , any theory that includes the theory of the propositions that are true at the boundary is **incomplete**.

CUNY

< ロ > < 同 > < 回 > < 回 >

Topology 00000	Paraconsistent Topology 0000●0 000000	Conclusion 00	

Basics

Inconsistent Topological Theories

Take $x \in \partial([\varphi])$ where $[\varphi]$ is a closed set in σ . By the above definition, since we have $x \in \partial([\varphi])$, we obtain $x \in [\varphi]$ as $[\varphi]$ is closed. Yet, $\partial[(\varphi)]$ is also included in $[\sim \varphi]$ which we have defined as a closed set. Thus, by the same reasoning, we conclude $x \in [\sim \varphi]$. Thus, $x \in [\varphi \land \sim \varphi]$ yielding that $x \models \varphi \land \sim \varphi$. Therefore, in σ , any theory that includes the boundary points is **inconsistent**.

	Topology	Paraconsistent Topology	Conclusion	
		00000 000000		
Basics				

Homeomorphism

An immediate observation yields that since extensions of all formulae in σ (respectively in τ) are closed (respectively, open), the topologies which are obtained in both paraconsistent and paracomplete logics are discrete. This observation may trivialize the matter as, for instance, discrete spaces with the same cardinality are homeomorphic.

Theorem

Let M_1 and M_2 be paraconsistent and paracomplete topological models respectively. If $|M_1| = |M_2|$, then there is a homeomorphism from a paraconsistent topological model to the paracomplete one, and vice versa.

CUNY

< ロ > < 同 > < 回 > < 回 >

	Topology	Paraconsistent Topology	Conclusion	
		000000 •00000		
Topological Properties	and Paraconsistency			

Connectedness - 1

Definition

A formula φ is called connected if any two formulae α_1 and α_2 with non-empty extensions, if $\varphi = \alpha_1 \lor \alpha_2$, then we have $[\alpha_1 \land \alpha_2] \neq \emptyset$. We will call a theory T connected, if it is generated by a set of connected formulae.

Proposition

Every connected formula is satisfiable in some connected (classical) topological space.

CUNY

• • • • • • • • • • • • •

	Topology	Paraconsistent Topology	Conclusion	
		000000 000000		
Topological Properties and P	araconsistency			

Connectedness - 2

Proposition

Every connected theory in closed set topology σ is inconsistent. Moreover, every connected theory in open set topology τ is incomplete.

Proposition

Let X be a connected topological space of closed sets. Then, the only subtheories that are not inconsistent are the trivial ones (i.e. empty theory and X itself).

CUNY

(日) (同) (三) (

	Topology	Paraconsistent Topology	Conclusion	
		000000 000000		
Topological Properties	and Paraconsistency			

Theorem

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with a homeomorphism f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) := f(V(p)). Then, $M \models \varphi$ iff $M' \models \varphi$ for all φ . Note that this also works for classical logic (Kremer & Mints, 2005).

	Topology	Paraconsistent Topology	Conclusion	
		000000		
Topological Properties	and Paraconsistency			

Corollary

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with a continuous f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) = f(V(p)). Then $M \models \varphi$ implies $M' \models \varphi$ for all φ .

Corollary

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with an open f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) = f(V(p)). Then $M' \models \varphi$ implies $M \models \varphi$ for all φ .

CUNY

(a)

Recall that a *homotopy* is a description of how two continuous function from a topological space to another can be deformed to each other. We can now state the formal definition.

Definition

Let S and S' be two topological spaces with continuous functions $f, f': S \rightarrow S'$. A homotopy between f and f' is a continuous function $H: S \times [0, 1] \rightarrow S'$ such that if $s \in S$, then H(s, 0) = f(s) and H(s, 1) = g(s)

In other words, a homotopy between f and f' is a family of continuous functions $H_t : S \to S'$ such that for $t \in [0, 1]$ we have $H_0 = f$ and $H_1 = g$ and the map $t \to H_t$ is continuous from [0, t] to the space of all continuous functions from S to S'. Notice that homotopy relation is an equivalence relation.

CUNY

Define $H: S \times [0,1] \to S'$ such that if $s \in S$, then $H(s,0) = f_0(s)$ and $H(s,1) = f_1(s)$. Then, H is a homotopy. Therefore, given a (paraconsistent) topological modal model M, we generate a family of models $\{M_t\}_{t \in [0,1]}$ whose valuations are generated by homotopic functions.

Definition

Given a model $M = \langle S, \sigma, V \rangle$, we call the family of models $\{M_t = \langle S, \sigma, V_t \rangle\}_{t \in [0,1]}$ generated by homotopic functions and M homotopic models. In the generation, we put $V_t = f_t(V)$.

Theorem

Homotopic paraconsistent (paracomplete) topological models satisfy the same modal formule.

CUNY

< ロ > < 同 > < 回 > < 回 >

	Topology	Paraconsistent Topology	Conclusion	
		000000	•0	
Future Work				

Open Questions?

- How can we logically define homotopy and cohomotopy groups in paraconsistent or paracomplete topological modal models?
- How would paraconsistency be affected under topological products?
- What is the (paraconsistent) logic of regular sets?

	Topology 00000	Paraconsistent Topology 000000 000000	Conclusion O	
Future Work				

Future Work

- Importing more coalgebraic and algebraic tools to dynamic epistemic formalism
- Application to deontic, doxastic etc. logics
- Connection between compactness

	Topology	Paraconsistent Topology	Conclusion	References
		000000		
Future Work				

References I

BÉZIAU, JEAN-YVES. 2005. Paraconsistent Logic from a Modal Viewpoint. Journal of Applied Logic, 3(1), 7–14.

GOLDBLATT, ROBERT. 2006.

Mathematical Modal Logic: A View of Its Evolution.

In: GABBAY, DOV M., & WOODS, JOHN (eds), *Handbook of History of Logic*, vol. 6. Elsevier.

GOODMAN, NICOLAS D. 1981.

The Logic of Contradiction.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27(8-10), 119-126.

KREMER, PHILIP, & MINTS, GRIGORI. 2005. Dynamic Topological Logic. Annals of Pure and Applied Logic, 131(1-3), 133–58.

MCKINSEY, J. C. C., & TARSKI, ALFRED. 1944. The Algebra of Topology. The Annals of Mathematics, 45(1), 141–191.

MCKINSEY, J. C. C., & TARSKI, ALFRED. 1946. On Closed Elements in Closure Algebras. The Annals of Mathematics, 47(1), 122–162.

C. Başkent

Paraconsistency and Topology

	Topology	Paraconsistent Topology	Conclusion	References
		000000		
Future Work				

References II

MORTENSEN, CHRIS. 2000.

Topological Seperation Principles and Logical Theories. *Synthese*, **125**(1-2), 169–178.

PRIEST, GRAHAM. 2002.

Paraconsistent Logic.

Pages 287–393 of: GABBAY, DOV, & GUENTHNER, F. (eds), Handbook of Philosophical Logic, vol. 6. Kluwer.

PRIEST, GRAHAM. 2009.

Dualising Intuitionistic Negation. *Principia*, **13**(3), 165–84.

CUNY

	Topology	Paraconsistent Topology	Conclusion	References
		000000		•
Thanks!				

Thanks for your attention!

Talk slides and the paper are available at:

www.canbaskent.net

C. Başkent

Paraconsistency and Topology