Paraconsistency, Topological Semantics, Homotopies and Games

Can BAŞKENT

The Graduate Center of the City University of New York cbaskent@gc.cuny.edu www.canbaskent.net

Computational Logic Seminar The Graduate Center of the City University of New York November 23th, 2010

0000 000000 000000 00 00 00 0 00000 00 000000		Topology	Paraconsistent Topology			Conclusion	
	0000	000000		00	ŏŏ	00	0

Outlook of the Talk

- What is Paraconsistency?
- Topological Semantics
- Paraconsistency and Topology
- Games
- Conclusion

C. Başkent

Paraconsistency ●000	Topology 000000	Paraconsistent Topology 0000000 00000	Games 00 00 000000	Conclusion 00	
Definition					

Motto

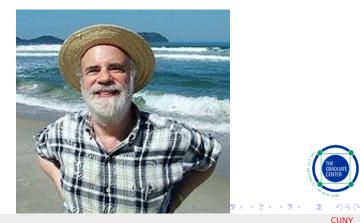
"I predict a time when there will be mathematical investigations of calculi containing contradictions, and people will actually be proud of having emancipated themselves from contradictions."

Wittgenstein, Philosophical Remarks

Paraconsistency 0●00	Topology 000000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definition					

DISCLAIMER!

No Kripke Structures in this talk!



C. Başkent Paraconsistency, Topology and Games

Paraconsistency	Topology	Paraconsistent Topology		Conclusion	
0000		000000	00 00 000000		
Definition					

Paraconsistency

The well-studied notion of deductive explosion describes the situation where any formula can be deduced from an inconsistent set of formulae, i.e. for all formulae φ and ψ , we have $\{\varphi, \neg \varphi\} \vdash \psi$, where \vdash denotes the classical logical consequence relation.

In this respect, both "classical" and intuitionistic logics are known to be explosive. Paraconsistent logic, on the other hand, is the umbrella term for logical systems where the logical consequence relation \vdash is not explosive (Priest, 2002).

CUNY

< < >> < </p>

Paraconsistency	Topology	Paraconsistent Topology		Conclusion	
0000		000000	00 00 000000		
Definition					

Motivation for Paraconsistency

Motivation for paraconsistency is usually this: we may be in a situation where our theory/information is inconsistent, but we still would like to make inference **sensibly**.

There are several class of situations where paraconsistency could be thought of a natural approach.

- Computer databases
- Scientific theories
- Law
- Counterfactuals
- Various human behavior

(Priest, 2002)

	Topology ●00000	Paraconsistent Topology 0000000 00000	Games 00	Conclusion 00	
			000000		
Definitions					

The First Semantics for Modal Logics

The history of the topological semantics of (modal) logics can be traced back to early 1920s making it the first semantics for variety of modal logics (Goldblatt, 2006). The major revival of the topological semantics of modal logics and its connections with algebras, however, is due to McKinsey and Tarski (McKinsey & Tarski, 1946; McKinsey & Tarski, 1944).

	Topology O●OOOO	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definitions					

What is a Topology?

Definition

The structure $\langle S, \tau \rangle$ is called a topological space if it satisfies the following conditions.

- 1. $S \in \tau$ and $\emptyset \in \tau$
- 2. τ is closed under arbitrary unions and finite intersections

Definition

The structure $\langle S, \sigma \rangle$ is called a topological space if it satisfies the following conditions.

- 1. $S \in \sigma$ and $\emptyset \in \sigma$
- 2. σ is closed under finite unions and arbitrary intersections

CUNY

< < >> < </p>

	Topology 00●000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definitions					

What is a Topology

Collections σ and τ are called topologies.

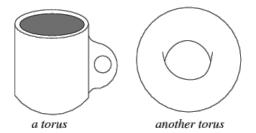
The elements of τ are called *open* sets whereas the elements of σ are called *closed* sets. Therefore, a set is open if its complement in the same topology is a closed set and vice versa.

C. Baskent

	Topology ○○○●○○	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definitions					

Homeomorphism

Two topological spaces are called *homeomorphic* if there is function from one to the other which is a continuous bijection with a continuous inverse.



CUNY

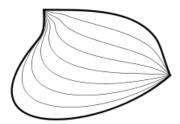
Homeomorphic spaces share the same topological properties (compactness, connectedness etc).

C. Başkent

	Topology 0000●0	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definitions					

Homotopy

Two continuous functions are called *homotopic* if there is a continuous deformation between the two.



Many algebraic-topological concepts are homotopy invariant (I don't know much about them).

CUNY

・ロッ ・同 ・ ・ ヨッ ・

C. Başkent

	Topology ○○○○○●	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Definitions					

Topological Semantics

In topological semantics, the modal operator for necessitation corresponds to the topological *interior* operator Int where Int(O) is the largest open set contained in O. Furthermore, one can dually associate the topological closure operator Clo with the possibility modal operator \Diamond where the closure Clo(O) of a given set O is the smallest closed set that contains O.

Let us set a piece of notation and terminology. The extension, i.e. the points at which the formula is satisfied, of a formula φ in the model M will be denoted as $[\varphi]$.

Thus, we will have $[\Box \varphi] = \operatorname{Int}([\varphi])$. Similarly, we will put $[\Diamond \varphi] = \operatorname{Clo}([\varphi])$.

CUNY

< < >> < </p>

	Topology 000000	Paraconsistent Topology ●000000 00000	Games 00 00 000000	Conclusion 00	
Basics					

History

Use of topological semantics for paraconsistent logic is not new. To our knowledge, the earliest work discussing the connection between inconsistency and topology goes back to Goodman (Goodman, 1981)¹.

In a recent work, Priest discussed the dual of the intuitionistic negation operator and considered that operator in topological framework (Priest, 2009). Similarly, Mortensen discussed topological seperation principles from a paraconsistent and paracomplete point of view and investigated the theories in such spaces (Mortensen, 2000). Similar approaches from modal perspective was discussed by Béziau, too (Béziau, 2005).



CUNY

C. Başkent

	Topology 000000	Paraconsistent Topology 0●00000 00000	Games 00 00 000000	Conclusion 00	
Pacies					

How to Connect?

Recall: $[\Box \varphi] = Int([\varphi])$ and $[\Diamond \varphi] = Clo([\varphi])$. Namely, in basic modal logic, only modal formulas produce topological objects.

Stipulate that: extension of *any* propositional variable will be an open set, or extension of *any* propositional variable will be a closed set (Mortensen, 2000).

CUNY

C. Başkent

	Topology 000000	Paraconsistent Topology 00●0000 00000	Games 00 00 000000	Conclusion 00	
Basics					

Problem of Negation -1

Negation can be difficult as the complement of an open set is not generally an open set, thus may not be the extension of a formula in the language. For this reason, we will need to use a new negation symbol $\dot{\sim}$ that returns the open complement (interior of the complement) of a given set.

	Topology 000000	Paraconsistent Topology 000€000 00000	Games 00 00 000000	Conclusion 00	
Basics					

Problem of Negation - 2

A similar idea can also be applied to closed sets where we assume that the extension of any propositional variable will be a closed set. In order to be able to avoid a similar problem with the negation, we stipulate yet another negation operator which returns the closed complement (closure of the complement) of a given set. In this setting, we will the symbol \sim that returns the closed complement of a given set.

In other words, we *separate* Boolean negation into two dual negations.

CUNY

< < >> < </p>

	Topology 000000	Paraconsistent Topology 0000€00 00000	Games 00 00 000000	Conclusion 00	
Basics					

Incomplete Topological Theories

Let us consider the boundary $\partial(\cdot)$ of a set X where $\partial(X)$ is defined as $\partial(X) := \operatorname{Clo}(X) - \operatorname{Int}(X)$. Consider now, for a given formuala φ , the boundary of its extension $\partial([\varphi])$ in the topology of opens τ . Let $x \in \partial([\varphi])$. Since $[\varphi]$ is open, $x \notin [\varphi]$. Similarly, $x \notin [\sim \varphi]$ as the open complement is also open by definition. Thus, neither φ nor $\sim \varphi$ is true at the boundary. Thus, in τ , any theory that includes the theory of the propositions that are true at the boundary is **incomplete**.

CUNY

< ロ > < 同 > < 回 > < 回 >

	Topology 000000	Paraconsistent Topology 0000000 00000	Games 00 00 000000	Conclusion 00	
Basics					

Inconsistent Topological Theories

Take $x \in \partial([\varphi])$ where $[\varphi]$ is a closed set in σ . By the above definition, since we have $x \in \partial([\varphi])$, we obtain $x \in [\varphi]$ as $[\varphi]$ is closed. Yet, $\partial[(\varphi)]$ is also included in $[\sim \varphi]$ which we have defined as a closed set. Thus, by the same reasoning, we conclude $x \in [\sim \varphi]$. Thus, $x \in [\varphi \land \sim \varphi]$ yielding that $x \models \varphi \land \sim \varphi$. Therefore, in σ , any theory that includes the boundary points is **inconsistent**.

	Topology 000000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Basics					

Homeomorphism

An immediate observation yields that since extensions of all formulae in σ (respectively in τ) are closed (respectively, open), the topologies which are obtained in both paraconsistent and paracomplete logics are discrete.

Theorem

Let M_1 and M_2 be paraconsistent and paracomplete topological models respectively. If $|M_1| = |M_2|$, then there is a homeomorphism from a paraconsistent topological model to the paracomplete one, and vice versa.

Therefore, paraconsistent and paracomplete models of the same cardinality do have the same topological properties!

CUNY

< < >> < </p>

	Topology 000000	Paraconsistent Topology ○○○○○○ ●○○○○	Games 00 00 000000	Conclusion	
Topological Propert	ties and Paracon	sistency			

Theorem

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with a homeomorphism f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) := f(V(p)). Then, $M \models \varphi$ iff $M' \models \varphi$ for all φ .

Note that this also works for classical logic (Artemov *et al.*, 1997; Kremer & Mints, 2005).

< < >> < </p>

CUNY

C. Başkent

	Topology 000000	Paraconsistent Topology ○○○○○○○ ○●○○○	Games 00 00 000000	Conclusion 00	
Topological Proper	ties and Paracon	isistency			

Corollary

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with a continuous f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) = f(V(p)). Then $M \models \varphi$ implies $M' \models \varphi$ for all φ .

Corollary

Let $M = \langle S, \sigma, V \rangle$ and $M' = \langle S, \sigma', V' \rangle$ be two paraconsistent topological models with an open f from $\langle S, \sigma \rangle$ to $\langle S, \sigma' \rangle$. Define V'(p) = f(V(p)). Then $M' \models \varphi$ implies $M \models \varphi$ for all φ .

CUNY

イロト イポト イヨト イヨト

C. Başkent

	Topology 000000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion 00	
Topological Proper	ties and Paracon	isistency			

Recall that a *homotopy* is a description of how two continuous function from a topological space to another can be deformed to each other. We can now state the formal definition.

Definition

Let S and S' be two topological spaces with continuous functions $f, f': S \rightarrow S'$. A homotopy between f and f' is a continuous function $H: S \times [0,1] \rightarrow S'$ such that if $s \in S$, then H(s,0) = f(s) and H(s,1) = g(s)

CUNY

< ロ > < 同 > < 回 > < 回 >

C. Başkent

	Topology 000000	Paraconsistent Topology ○○○○○○ ○○○●○	Games 00 00 000000	Conclusion	
Topological Proper	ties and Paracon	isistency			

In other words, a homotopy between f and f' is a family of continuous functions $H_t : S \to S'$ such that for $t \in [0, 1]$ we have $H_0 = f$ and $H_1 = g$ and the map $t \to H_t$ is continuous from [0, 1] to the space of all continuous functions from S to S'. Notice that homotopy relation is an equivalence relation.

C. Baskent

	Topology	Paraconsistent Topology		Conclusion	
		000000 0000	00 00 000000		
Topological Proper	ties and Paracon	sistency			

Define $H: S \times [0,1] \to S'$ such that if $s \in S$, then $H(s,0) = f_0(s)$ and $H(s,1) = f_1(s)$. Then, H is a homotopy. Therefore, given a (paraconsistent) topological modal model M, we generate a family of models $\{M_t\}_{t \in [0,1]}$ whose valuations are generated by homotopic functions.

Definition

Given a model $M = \langle S, \sigma, V \rangle$, we call the family of models $\{M_t = \langle S, \sigma, V_t \rangle\}_{t \in [0,1]}$ generated by homotopic functions and M homotopic models. In the generation, we put $V_t = f_t(V)$.

Theorem

Homotopic paraconsistent (paracomplete) topological models satisfy the same modal formulae.

CUNY

	Topology 000000	Paraconsistent Topology 000000 00000	Homotopies ●0	Games 00 00 000000	Conclusion 00	
Classical Case						

Classical Case

We saw that homotopic paraconsistent (paracomplete) topological models satisfy the same modal formulae. We can extend it to classical case.

Theorem

Homotopic (classical) topological models satisfy the same modal formule.

Proof is by induction.

	Topology 000000	Paraconsistent Topology 0000000 00000	Homotopies ○●	Games 00 00 000000	Conclusion 00	
Classical Case						

- Classification of homotopic models
- Modal logic of algebraic topological structures: modal logical equivalent of *nullstellensatz* of Hilbert?

C. Başkent

	Topology 000000	Paraconsistent Topology 000000 00000	Games ●0 00 000000	Conclusion 00	
The Paradox					

Impossibility

The following configuration of beliefs is impossible (in consistent frameworks):

Ann believes that Bob assumes that Ann believes that Bob's assumption is wrong. (Brandenburger & Keisler, 2006) Notice that this is essentially a 2-person Russell's Paradox.

CUNY

< ロ > < 同 > < 回 > < 回 >

	Topology 000000	Paraconsistent Topology 000000 00000	Games 0● 00 000000	Conclusion 00	
The Paradox					

Approaches

It is possible to analyze the situation from neighborhood semantical perspective (Pacuit, 2007).

However, notice that the arguments and therefore the paradox solely depends on the consistency assumption.

What happens if we switch to the paraconsistent frameworks: stay away from trivial theories, accept some contradictions!

	Topology	Paraconsistent Topology	Games	Conclusion	
			00		
		00000	00 0000		
Category Theoretic	al Touch				

Self-Reference

Recently, a category theoretical approach has been presented (Abramsky & Zvesper, n.d.).

They focus on the fixed points and extend their analysis to category theory.

Lawvere's Theorem says that if $g : X \to V^X$ is surjective, then every function $f : V \to V$ has a fixed point (Lawvere, 1969). BK paradox occurs if f plays the role of a Boolean negation.

CUNY

< < >> < </p>

	Topology 000000	Paraconsistent Topology 0000000 00000	Games ○○ ○●	Conclusion 00	
			000000		
Category Theoretic	al Touch				

Conditions

Lawvere's Theorem says that if $g : X \to V^X$ is surjective, then every function $f : V \to V$ has a fixed point (Lawvere, 1969). There is an important restriction:

 X should be cartesian closed (actually, should only admit exponents)

Usually people consider the category of sets Set.

	Topology 000000	Paraconsistent Topology 0000000 00000	Games ○○ ●○○○○○	Conclusion 00	
Paraconsistent Tou	ch				

Co-Heyting

However, there is also another, a little unfamiliar, category which is cartesian closed: **co-Heyting** algebras.

Furthermore, we have already seen an example of it: topology of closed sets a natural semantics for paraconsistency.

Figure: Arend Heijting

< < >> < </p>

CUNY

	Topology 000000	Paraconsistent Topology 000000 00000	Games ○○ ○●○○○○	Conclusion 00	
Paraconsistent Tou	ch				

Co-Heyting: definitions

Let *L* be a bounded distributive lattice. If there is defined a binary operation $\Rightarrow: L \times L \rightarrow L$ such that for all $x, y, z \in L$,

$$x \leq (y \Rightarrow z)$$
 iff $(x \land y) \leq z$,

then we call (L,\Rightarrow) a Heyting algebra. Dually, if we have a binary operation $\setminus : L \times L \rightarrow L$ such that

$$(y \setminus z) \leq x$$
 iff $y \leq (x \vee z)$,

then we call (L, \setminus) a co-Heyting algebra. We call \Rightarrow implication, \setminus subtraction.

C. Başkent

	Topology	Paraconsistent Topology	Games	Conclusion	
		0000000	00 00 00●000		
Paraconsistent Tou	ch				

Co-Heyting: definitions

In Boolean algebras, Heyting and co-Heying algebras give two different operations. We interpret $x \Rightarrow y$ as $\neg x \lor y$, and $x \setminus y$ as $x \land \neg y$.

In other words, a co-Heyting algebra is a generalization of a Boolean algebra that allows a generalization in which *principium contradictionis* is relaxed.

	Topology	Paraconsistent Topology	Games	Conclusion	
		000000 00000	00 00 000●00		
-					

Paraconsistent Touch

Paraconsistent BK Paradox

Therefore, even if we have paraconsistent framework. we will have fixed points.

How:

- Take a co-Heyting algebra which is a natural candidate for paraconsistency.
- Observe that it admits exponents: $x^y \equiv x \land \neg y$.
- Thus, Lawvere's Theorem applies.
- It will still have fixed points: instead of the Boolean negation take co-Heyting negation as the unary operator.

(日) (同) (日) (日)

CUNY

	Topology 000000	Paraconsistent Topology 000000 00000	Games ○○ ○○○○○○○○○○	Conclusion 00	
Paraconsistent Tou	ch				

This framework raises several questions.

- What are the new holes? Do the previous ones still survive after we replace the Boolean negation with co-Heyting negation?
- Can we find a nontrivial paraconsistent framework where BK paradox does not exist?
- What about non-wellfounded sets?

C. Başkent

	Topology 000000	Paraconsistent Topology 000000 00000	Games ○○ ○○○○○●	Conclusion 00	
Paraconsistent Tou	ch				

Answers

Non-well-founded set theory does not help as it does not offer any solution to self-referentiality.

< ロ > < 同 > < 回 > < 回 >

CUNY

Russell's Paradox exists in non-well-founded set theory, too.

Recall that:
$$w \models \Box \varphi \text{ iff } \forall v (v \in w \rightarrow v \models \varphi)$$

	Topology 000000	Paraconsistent Topology 0000000 00000	Games 00 00 000000	Conclusion ●0	
Future Work					

Open Questions?

- How can we logically define homotopy and cohomotopy groups in paraconsistent or paracomplete topological model models?
- How would paraconsistency be affected under topological products?
- What is the (paraconsistent) logic of regular sets?
- What about some topological framework for BK paradox?

CUNY

• • • • • • • • • • • • • •

C. Başkent

	Topology 000000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion ○●	
Future Work					

- Importing more coalgebraic and algebraic tools to dynamic epistemic formalism
- Application to deontic, doxastic etc. logics
- Connection between compactness

C. Başkent

Topology	Paraconsistent Topology		Conclusion	References
	000000	00 00 000000		

Future Work

References I

ABRAMSKY, SAMSON, & ZVESPER, JONATHAN.

From Lawvere to Brandenburger-Keisler: Interactive forms of diagonalization and self-reference.

ARTEMOV, S., DAVOREN, J. M., & NERODE, A. 1997 (June).

Modal Logics and Topological Semantics for Hybrid Systems. Tech. rept. Mathematical Sciences Institute, Cornell University.

BÉZIAU, JEAN-YVES. 2005. Paraconsistent Logic from a Modal Viewpoint.

Journal of Applied Logic, 3(1), 7–14.

BRANDENBURGER, ADAM, & KEISLER, H. JEROME. 2006.

An Impossibility Theorem on Beliefs in Games. *Studia Logica*, **84**, 211–240.

GOLDBLATT, ROBERT. 2006.

Mathematical Modal Logic: A View of Its Evolution.

In: GABBAY, DOV M., & WOODS, JOHN (eds), *Handbook of History of Logic*, vol. 6. Elsevier.

GOODMAN, NICOLAS D. 1981. The Logic of Contradiction.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27(8-10), 119-126.

CUNY

C. Başkent

Topology	Paraconsistent Topology		Conclusion	References
	000000	00 00 000000		

Future Work

References II

${\rm Kremer}, \; {\rm Philip}, \; \& \; {\rm Mints}, \; {\rm Grigori}. \; 2005.$

Dynamic Topological Logic.

Annals of Pure and Applied Logic, 131(1-3), 133-58.

LAWVERE, F. WILLIAM. 1969.

Diagonal Arguments and Cartesian Closed Categories.

Pages 134-145 of: DOLD, A., & ECKMANN, B. (eds), Category Theory, Homology Theory and their Applications II. Lecture Notes in Mathematics, vol. 92. Springer.

MCKINSEY, J. C. C., & TARSKI, ALFRED. 1944. The Algebra of Topology. The Annals of Mathematics, 45(1), 141–191.

MCKINSEY, J. C. C., & TARSKI, ALFRED. 1946. On Closed Elements in Closure Algebras.

The Annals of Mathematics, **47**(1), 122–162.

MORTENSEN, CHRIS. 2000.

Topological Seperation Principles and Logical Theories. *Synthese*, **125**(1-2), 169–178.

CUNY

C. Başkent

	Topology 000000	Paraconsistent Topology 000000 00000	Games 00 00 000000	Conclusion	References ○
Future Work					

References III

PACUIT, ERIC. 2007.

Understanding the Brandenburger-Keisler Belief Paradox. *Studia Logica*, **86**(3), 435–454.

PRIEST, GRAHAM. 2002.

Paraconsistent Logic. Pages 287-393 of: GABBAY, DOV, & GUENTHNER, F. (eds), Handbook of Philosophical Logic, vol. 6. Kluwer.

PRIEST, GRAHAM. 2009. Dualising Intuitionistic Negation. Principia, 13(3), 165–84.

C. Başkent

Topology	Paraconsistent Topology		Conclusion	References
	000000	00 00 000000		•

Thanks!

Thanks for your attention!

C. Baskent