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Public Announcement Logic

Introduction I

Public announcement logic is a well-known example of dynamic
epistemic logics (Plaza, 1989; van Ditmarsch et al., 2007).
The contribution of public announcement logic (PAL, henceforth)
to the field of knowledge representation is mostly due to its
succinctness and clarity in reflecting the simple intuition as to how
epistemic updates work in some situation. But, PAL is not more
expressiveness than the basic epistemic logic.
Public announcement logic has many applications in the fields of
formal approaches to social interaction, dynamic logics, knowledge
representation and updates (Balbiani et al., 2008; Baltag & Moss,
2004; van Benthem, 2006; van Benthem et al., 2005)
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Public Announcement Logic

Introduction II

Virtually almost all applications of PAL make use of Kripke models
for knowledge representation. However, as it is very well known,
Kripke models are not the only representational tool for modal and
epistemic logics.
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Topological Semantics

Topological Semantics for PAL I

The way PAL updates the epistemic states of the knower is by
“state-elimination”. A truthful announcement ϕ is made, and
consequently, the agents updates their epistemic states by
eliminating the possible states where ϕ is false (Balbiani et al.,
2007; Balbiani et al., 2008; van Ditmarsch et al., 2007). Kripkean
semantics for PAL is well-known.
Let T = 〈T , τ, v〉 be a topological model and ϕ be a public
announcement. We now need to obtain the topological model Tϕ
which is the updated model after the announcement. We denote
the extension of a formula ϕ in model M by (ϕ)M, so
(ϕ)M = {w :M,w |= ϕ}.

C. Başkent CUNY

Non-Classicity in Logic and Games



DEL Paraconsistency Paradox Strategies References

Topological Semantics

Topological Semantics for PAL II

Define Tϕ = 〈Tϕ, τϕ, vϕ〉 where Tϕ = T ∩ (ϕ),
τϕ = {O ∩ Tϕ : O ∈ τ} and vϕ = v ∩ Tϕ.
Clearly, τϕ is a topology.
Now, we can give a semantics for the public announcements in
topological models.

T , s |= [ϕ]ψ iff T , s |= ϕ implies Tϕ, s |= ψ

C. Başkent CUNY
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Topological Semantics

Topological Semantics for PAL III

Therefore, the reduction axioms for PAL in topological spaces are
given as follows.

1. [ϕ]p ↔ (ϕ→ p)

2. [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

3. [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Iψ ↔ (ϕ→ I[ϕ]ψ)

Conjecture

PAL in topological spaces is complete with respect to the given
semantics.
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Topological Semantics

Topological Semantics for PAL - Multi-Agent I

Let T = 〈T , τ〉 and T ′ = 〈T ′, τ ′〉 be two topological spaces. Let
X ⊆ T × T ′. We call X horizontally open (h-open) if for any
(x , y) ∈ X , there is a U ∈ τ such that x ∈ U, and U × {y} ⊆ X .
In a similar fashion, we call X vertically open (v-open) if or any
(x , y) ∈ X , there is a U ′ ∈ τ ′ such that y ∈ U ′, and {x}×U ′ ⊆ X .
Now, given two topological spaces T = 〈T , τ〉 and T ′ = 〈T ′, τ ′〉,
let us associate two modal operators I and I′ respectively to these
models. Then, we can obtain a product topology on a language
with those two modalities. The product model will be of the form
〈T × T ′, τ, τ ′〉 on a language with two modalities I and I′.

C. Başkent CUNY
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Topological Semantics

Topological Semantics for PAL - Multi-Agent II

The semantics of those modalities are given as such.
(x , y) |= Iϕ iff ∃U ∈ τ , x ∈ U and ∀u ∈ U, (u, y) |= ϕ
(x , y) |= I′ϕ iff ∃U ′ ∈ τ ′, y ∈ U ′ and ∀u′ ∈ U ′, (x , u′) |= ϕ

It has been shown that the fusion logic S4⊕S4 is complete with
respect to products of arbitrary topological spaces (van Benthem
& Sarenac, 2004).
The language of multi-agent topological PAL is as follows. We
specify it for two-agents for simplicity, but it can easily be
generalized to n-agents.

p | ¬ϕ | ϕ ∧ ϕ | K1ϕ | K2ϕ | [ϕ]ϕ

C. Başkent CUNY
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Topological Semantics

Topological Semantics for PAL - Multi-Agent III

For given two topological models T = 〈T , τ, v〉 and
T ′ = 〈T ′, τ ′, v〉, the product topological model
M = 〈T × T ′, τ, τ ′, v〉 has the following semantics.

M, (x , y) |= K1ϕ iff ∃U ∈ τ , x ∈ U and ∀u ∈ U, (u, y) |= ϕ
M, (x , y) |= K2ϕ iff ∃U ′ ∈ τ ′, y ∈ U ′ and ∀u′ ∈ U ′, (x , u′) |= ϕ
M, (x , y) |= [ϕ]ψ iff M, (x , y) |= ϕ implies Mϕ, (x , y) |= ψ

where Mϕ = 〈Tϕ × T ′ϕ, τϕ, τ
′
ϕ, vϕ〉 is the updated model. We

define all Tϕ, T ′ϕ, τϕ, τ ′ϕ, and vϕ as before.
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Topological Semantics

Topological Semantics for PAL - Multi-Agent IV

Therefore, the following axioms axiomatize the product topological
PAL together with the axioms of S4⊕S4.

1. [ϕ]p ↔ (ϕ→ p)

2. [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

3. [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Kiψ ↔ (ϕ→ Ki [ϕ]ψ)

Conjecture

Product topological PAL is complete and decidable with respect to
the given axiomatization.
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Applications

Announcement Stabilization I

Muddy Children presents an interesting case for PAL (Fagin et al.,
1995). In that game, the model gets updated after each children
says that she does not know if she had mud on her forehead. The
model keeps updated until the announcement is negated (van
Benthem, 2007).
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Applications

Announcement Stabilization II
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Applications

Announcement Stabilization III

For a model M and a formula ϕ, we define the announcement limit
limϕ M as the first model which is reached by successive
announcements of ϕ that no longer changes after the last
announcement is made. Announcement limits exist in both finite
and infinite models (van Benthem & Gheerbrant, 2010).
In topological models, the stabilization of the fixed-point
definition1 version of common knowledge may occur later than
ordinal stage ω. However, it stabilizes in ≤ ω steps in Kripke
models (van Benthem & Sarenac, 2004).
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Applications

Announcement Stabilization IV

Conjecture

For some formula ϕ and some topological model M, it may take
more than ω stage to reach the limit model limϕ M.

1Formula ϕ is common knowledge among two-agents 1 and 2 C1,2ϕ is
represented with the (largest) fixed-point definition as follows:
C1,2ϕ := νp.ϕ ∧ K1p ∧ K2p where Ki , for i = 1, 2 is the familiar knowledge
operator (Barwise, 1988).
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Applications

Backward Induction I

Consider the backward induction solution where players trace back
their moves to develop a winning strategy. Notice that the
Aumann’s backward induction solution assumes common
knowledge of rationality (Aumann, 1995; Halpern, 2001) (Although
according to Halpern, Stalnaker proved otherwise (Halpern, 2001;
Stalnaker, 1998; Stalnaker, 1994; Stalnaker, 1996).
Granted, there can be several philosophical and epistemic issues
about the centipede game and its relationship with rationality, but
we will pursue this direction here (Artemov, 2009a; Artemov,
2009b).
However, this issue can also be approached from a dynamic
epistemic perspective.
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Applications

Backward Induction II

Recently, it has been shown that in any game tree model M taken
as a PAL model, limrational M is the actual subtree computed by
the backward induction procedure where the proposition rational
means that “at the current node, no player has chosen a strictly
dominated move in the past coming here” (van Benthem &
Gheerbrant, 2010). Therefore, the announcement of
node-rationality produces the same result as the backward
induction procedure.
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Applications

Backward Induction III

However, there seems to be a problem in topological models. The
admissibility of limit models can take more than ω steps in
topological models as we have conjectured earlier. Therefore, the
BI procedure can take ω steps or more.

Conjecture

In topological models of games, under the assumption of
rationality, the backward induction procedure can take more than
ω steps.
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What is Paraconsistency?

Basics

The well-studied notion of deductive explosion describes the
situation where every formula can be deduced from an inconsistent
set of formulae, i.e. for all ϕ and ψ, we have {ϕ,¬ϕ} ` ψ, where
` denotes logical consequence relation. In this respect, both
“classical” and intuitionistic logics are known to be explosive.
Paraconsistent logic, on the other hand, is the umbrella term for
logical systems where the logical consequence relation ` is not
explosive (Priest, 2002).
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What is Paraconsistency?

Semantics I

We stipulate that extension of any propositional variable will be a
closed set (Goodman, 1981; Mortensen, 2000). In that setting,
conjunction and disjunction works fine for finite intersections and
unions. Nevertheless, negation can be difficult as the complement
of a closed set may not be a closed set, thus may not be the
extension of a formula in the language. For this reason, we use the
symbol ∼ that returns the closed complement of a given set.
We can make a similar observation about the boundary points ∂(·)
in σ. Now, take x ∈ ∂((ϕ)) where (ϕ) is a closed set in topology
σ. By the above definition, since we have x ∈ ∂((ϕ)), we obtain
x ∈ (ϕ) as (ϕ) is closed.

C. Başkent CUNY
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What is Paraconsistency?

Semantics II

Yet, ∂((ϕ)) is also included in (∼ ϕ) which we have defined as a
closed set. Thus, by the same reasoning, we conclude x ∈ (∼ ϕ).
Thus, x ∈ (ϕ ∧ ∼ ϕ) yielding that x |= ϕ ∧ ∼ ϕ. Therefore, in σ,
any theory that includes the boundary points will be inconsistent.
In this respect, the model 〈S , σ,V 〉 with the negation symbol ∼
will be called a paraconsistent topological model where V is a
valuation function.
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What is Paraconsistency?

Continuity I

A recent research program that considers topological modal logics
with continuous functions were discussed in an early work of
Artemov et al., and later by Kremer and Mints (Artemov et al.,
1997; Kremer & Mints, 2005). In these aforementioned works,
they associated continuous functions with temporal modal operator
and discussed the orbits of such functions.
Take two closed set topologies σ and σ′ on a given set S and a
homeomorphism f : 〈S , σ〉 → 〈S , σ′〉. We have a simple way to
associate the respective valuations between two models M and M ′

which respectively depend on σ and σ′ so that we can have a truth
preservation result. Therefore, define V ′(p) = f (V (p)). Then, we
have M |= ϕ iff M ′ |= ϕ.

C. Başkent CUNY
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What is Paraconsistency?

Continuity II

Conjecture

Let M = 〈S , σ,V 〉 and M ′ = 〈S , σ′,V ′〉 be two paraconsistent
topological models with a continuous f from 〈S , σ〉 to 〈S , σ′〉.
Define V ′(p) = f (V (p)). Then M,w |= ϕ implies M ′,w ′ |= ϕ for
all ϕ where w ′ = f (w).

Conjecture

Let M = 〈S , σ,V 〉 and M ′ = 〈S , σ′,V ′〉 be two paraconsistent
topological models with an open f from 〈S , σ〉 to 〈S , σ′〉. Define
V ′(p) = f (V (p)). Then M ′,w ′ |= ϕ implies M,w |= ϕ for all ϕ
where w ′ = f (w).
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Homotopies

Basics I

Let S and S ′ be two topological spaces with continuous functions
f , f ′ : S → S ′. A homotopy between f and f ′ is a continuous
function H : S × [0, 1]→ S ′ such that if s ∈ S , then
H(s, 0) = f (s) and H(s, 1) = g(s).
Given a model M = 〈S , σ,V 〉, we call the family of models
{Mt = 〈St ⊆ S , σt ,Vt〉}t∈[0,1] generated by M and homotopic
functions homotopic models. In the generation, we put Vt = ft(V ).
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Homotopies

Basics II

Conjecture

Given two topological paraconsistent models M = 〈S , σ,V 〉 and
M ′ = 〈S ′, σ′,V ′〉 with two continuous functions f , f ′ : S → S ′

both of which respect the valuation: V ′ = f (V ) = f ′(V ). If there
is a homotopy H between f and f ′, then M and M ′ satisfy the
same modal formulae.

Therefore, we can “compare” different updates, and construct the
connection between them.

C. Başkent CUNY
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Applications

An Epistemic Concept: Robust Knowledge/Belief I

Consider two believers Ann and Bob where Ann is an ordinary
believer while Bob is a religious cleric of the religion that Ann is
following. Therefore, they believe in the same religion and the
same rules of the religion.
However, we feel that Bob believes it more than Ann even though
they believe in exactly the same propositions. In other words, there
is still a difference between their belief. Then, what is this
difference?

C. Başkent CUNY
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Applications

An Epistemic Concept: Robust Knowledge/Belief II

The reason for this is the fact that the extent of Bob’s knowledge
is wider than that of Ann’s.
In this context, we can ask the following two questions.

1. How much wider is Bob’s belief?

2. How is Ann’s belief transformed to Bob’s?

These two questions are meaningful. Even if their language cannot
tell us which one has wider knowledge, ontologically, we know that
Bob has more knowledge in some sense even if they agree on every
proposition. Clearly, the reason for that is the fact that Bob
considers more possible worlds for a given proposition which makes
his belief more robust than Ann’s2.

C. Başkent CUNY
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Applications

An Epistemic Concept: Robust Knowledge/Belief III

Let us set up a piece of notation first. By [w ], we denote the set of
accessible states from w , i.e. [w ]R = {v : wRv}.

Robust Knowledge

Given two agents i and j , and a state w ∈W in a model
M = 〈W ,Ri ,Rj ,V 〉. Assume M,w |= Kiϕ, and M,w |= Kjϕ.
We say i ’s knowledge of ϕ more robust than j ’s at w if
(ϕ)M ∩ [w ]Rj

⊆ (ϕ)M ∩ [w ]Ri
.

C. Başkent CUNY
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Applications

An Epistemic Concept: Robust Knowledge/Belief IV

From a dynamic epistemic angle, homeomorphisms and
homotopies can explain this transformation from Ann’s beliefs to
Bob’s belief with respect to their models.
The parameter mentioned in the definition of homotopies can easily
be considered as a temporal parameter. It help us to give a step by
step account of the transformation between Ann’s and Bob’s belief.

2We borrowed the term “robust” from Artemov.
C. Başkent CUNY
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Statement

The Paradox

The Brandenburg-Keisler paradox (‘BK paradox’, henceforth) is a
two-person self-referential paradox in epistemic game theory
(Brandenburger & Keisler, 2006).
The following configuration of beliefs is impossible:

Paradox
Ann believes that Bob assumes that Ann believes that Bob’s
assumption is wrong.

The paradox appears if you ask whether“Ann believes that Bob’s
assumption is wrong”.
Notice that this is essentially a 2-person Russell’s Paradox.

C. Başkent CUNY
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Statement

Model I

Brandenburger and Keisler use belief sets to represent the players’
beliefs.
The model (Ua,Ub,Ra,Rb) that they consider is called a belief
structure where Ra ⊆ Ua × Ub and Rb ⊆ Ub × Ua.
The expression Ra(x , y) represents that in state x , Ann believes
that the state y is possible for Bob, and similarly for Rb(y , x). We
will put Ra(x) = {y : Ra(x , y)}, and similarly for Rb(y).
At a state x , we say Ann believes P ⊆ Ub if Ra(x) ⊆ P.

C. Başkent CUNY
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Statement

Model II

A modal logical semantics for the interactive belief structures can
be given as well.
We use two modalities � and ♥ for the belief and assumption
operators respectively with the following semantics.

x |= �abϕ iff ∀y ∈ Ub.Ra(x , y) implies y |= ϕ
x |= ♥abϕ iff ∀y ∈ Ub.Ra(x , y) iff y |= ϕ

C. Başkent CUNY
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Statement

Model III

A belief structure (Ua,Ub,Ra,Rb) is called assumption complete
with respect to a set of predicates Π on Ua and Ub if for every
predicate P ∈ Π on Ub, there is a state x ∈ Ua such that x
assumes P, and for every predicate Q ∈ Π on Ua, there is a state
y ∈ Ub such that y assumes Q.
We will use special propositions Ua and Ub with the following
meaning: w |= Ua if w ∈ Ua, and similarly for Ub. Namely, Ua is
true at each state for player Ann, and Ub for player Bob.
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Statement

Model IV

Brandenburger and Keisler showed that no belief model is
complete for its first-order language. Therefore, “not every
description of belief can be represented” with belief structures
(Brandenburger & Keisler, 2006).
The incompleteness of the belief structures is due to the holes in
the model. A model, then, has a hole at ϕ if either Ub ∧ ϕ is
satisfiable but ♥abϕ is not, or Ua ∧ϕ is satisfiable but ♥baϕ is not.
A big hole is then defined by using the belief modality � instead of
the assumption modality ♥.
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Statement

Two Lemmas I

In the original paper, the authors make use of two lemmas before
identifying the holes in the system.
First, let us define a special propositional symbol D with the
following valuation
D = {w ∈W : (∀z ∈W )[P(w , z)→ ¬P(z ,w)]}.

Lemma

1. If ♥abUb is satisfiable, then �ab�ba�ab♥baUa → D is valid.

2. ¬�ab♥ba(Ua ∧D) is valid.

C. Başkent CUNY
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Statement

Two Lemmas II

Theorem (Modal Version)

There is either a hole at Ua, a hole at Ub, a big hole at one of the
formulas

♥baUa, �ab♥baUa, �ba�ab♥baUa

a hole at the formula Ua ∧D, or a big hole at the formula
♥ba(Ua ∧D). Thus, there is no complete interactive frame for the
set of all modal formulas built from Ua, Ub, and D.
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Why Non-Well Founded Set Theory?

Concept I

Non-well-founded set theory is a theory of sets where the axiom of
foundation is replaced by the anti-foundation axiom which is due
to Mirimanoff (Mirimanoff, 1917).
Then, decades later, it was formulated by Aczel within graph
theory, and this motivates our approach here (Aczel, 1988). In
non-well-founded (NWF, henceforth) set theory, we can have true
statements such as ‘x ∈ x ’, and such statements present
interesting properties in game theory. NWF theories are natural
candidates to represent circularity (Barwise & Moss, 1996).
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces I

To the best of our knowledge, the idea of using non-well-founded
sets as Harsanyi type spaces was first suggested by Lismont
(Lismont, 1992), and extended later by Heifetz (Heifetz, 1996).
Heifetz motivated his approach by “making the types an explicit
part of the states’ structure”, and hence obtained a circularity that
enabled him to use non-well-founded sets.
The way he motivated his approach, which is related to our
perspective here, is by arguing that NWF type spaces can be used
“once states of nature and types would be longer be associated
with states of the world, but constitute their very definition.” [ibid,
(his emphasis)].

C. Başkent CUNY
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces II

There can be argued, at this stage that circularity in a game
theoretical model is not desirable. However, considering the fact
that Harsanyi type spaces represent uncertainty, NWF models
indeed become good candidates to formalize uncertainty. Here is

C. Başkent CUNY
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces III

Heifetz on the very same issue.

Nevertheless, one may continue to argue that a state of
the world should indeed be a circular, self-referantial
object: A state represents a situation of human
uncertainty, in which a player considers what other
players may think in other situations, and in particular
about what they may think there about the current
situation. According to such a view, one would seek a
formulation where states of the world are indeed
self-referring mathematical entities.
(Heifetz, 1996, p. 204).
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Why Non-Well Founded Set Theory?

Games with Non-well-founded Type Spaces IV

On the other hand, NWF set theory is not immune to the problems
that the classical set theory suffers from.
For example, note that Russell’s paradox is not solved in NWF
setting, and moreover the subset relation stays the same in NWF
theory (Moss, 2009).
Therefore, we may not expect the BK paradox to disappear in
NWF setting. Yet, NWF set theory will give us many other tools in
game theory.

C. Başkent CUNY

Non-Classicity in Logic and Games



DEL Paraconsistency Paradox Strategies References

Why Non-Well Founded Set Theory?

Definitions

What we call a non-well-founded model is a tuple M = (W ,V )
where W is a non-empty non-well-founded set (hyperset, for
short), and V is a valuation. We will use the symbol |=+ to
represent the semantical consequence relation in a NWF model
based on (Gerbrandy, 1999).

M,w |=+ �ijϕ iff M,w |=+ Ui ∧
∀v ∈ w(M, v |=+ Uj → M, v |=+ ϕ)

M,w |=+ ♥ijϕ iff M,w |=+ Ui ∧
∀v ∈ w(M, v |=+ Uj ↔ M, v |=+ ϕ)

C. Başkent CUNY
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Why Non-Well Founded Set Theory?

Lemmas I

Define D+ = {w ∈W : ∀v ∈W .(v ∈ w → w /∈ v)}.
We define the propositional variable D+ as the propositional
variable with the valuation set D+.

Conjecture

There exists a NWF belief structure in which if ♥abUb is
satisfiable, then the formula �ab�ba�ab♥baUa ∧ ¬D+ is also
satisfiable.

Conjecture

The formula �ab♥ba(Ua ∧D+) is satisfiable in some NWF belief
structures.
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Why Non-Well Founded Set Theory?

Lemmas II

Yet, we have to be careful here.
This argument does not establish that NWF belief models are
complete. It establishes the fact that they do not have the same
holes as the standard belief models. We will get back to this issue
later on, and give an answer from category theoretical point of
view.
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Paraconsistency and Category Theoretical Touch

Self-Reference I

Recently, a category theoretical approach has been presented
(Abramsky & Zvesper, 2010).
They focus on the fixed points and extend their analysis to
category theory.
Lawvere’s Theorem says that if g : X → V X is surjective, then
every function f : V → V has a fixed point (Lawvere, 1969).
BK paradox occurs if f plays the role of a Boolean negation.
There is an important restriction:

I X should be cartesian closed (actually, should only admit
exponents)

Usually people consider the category of sets Set.
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Paraconsistency and Category Theoretical Touch

Co-Heyting: definitions

Let L be a bounded distributive lattice. If there is defined a binary
operation ⇒: L× L→ L such that for all x , y , z ∈ L,

x ≤ (y ⇒ z) iff (x ∧ y) ≤ z ,

then we call (L,⇒) a Heyting algebra.
Dually, if we have a binary operation \ : L× L→ L such that

(y \ z) ≤ x iff y ≤ (x ∨ z),

then we call (L, \) a co-Heyting algebra.
We call ⇒ implication, \ subtraction.
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Paraconsistency and Category Theoretical Touch

Co-Heyting: definitions

In Boolean algebras, Heyting and co-Heying algebras give two
different operations. We interpret x ⇒ y as ¬x ∨ y , and x \ y as
x ∧ ¬y .
In other words, a co-Heyting algebra is a generalization of a
Boolean algebra that allows a generalization in which principium
contradictionis is relaxed.
Closed set topologies are co-Heyting algebras. The topological
paraconsistent negation ∼ is defined as ∼ϕ ≡ 1 \ ϕ where 1 is the
top element of the lattice.
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Paraconsistency and Category Theoretical Touch

Paraconsistent BK Paradox

Therefore, even if we have paraconsistent framework. we will have
fixed points.
How:

I Take a co-Heyting algebra - which is a natural candidate for
paraconsistency.

I Observe that it admits exponents: xy ≡ x ∧ ¬y .

I Thus, Lawvere’s Theorem applies.

I It will still have fixed points: instead of the Boolean negation,
take co-Heyting negation as the unary operator.
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Paraconsistency and Category Theoretical Touch

Topological BK Paradox

Therefore, by following this idea, paraconsistent topological
frameworks can be given. We claim that the BK sentence is
satisfiable in some paraconsistent topological framework where we
use topologies and topological products instead of accessibility
relations.
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Paraconsistency and Category Theoretical Touch

NWF Categories

Category of hypersets is also CCC.
Thus, Lawvere theorem applies.
Therefore, we will have “different” fixed points, thus BK sentences
in the NWF setting.

C. Başkent CUNY

Non-Classicity in Logic and Games



DEL Paraconsistency Paradox Strategies References

Strategy Logic

Motivation I

In game theory, strategy for a player is defined as “a set of rules
that describe exactly how (...) [a] player should choose, depending
on how the [other] players have chosen at earlier moves”
(Hodkinson et al., 2000). Nevertheless, this definition of strategies
is static, and presumably is constructed before the game is actually
played.
While people play games, they observe, learn, recollect and update
their strategies during the game as well as adopting deontological
strategies and goals before the game. Players update and revise
their strategies, for instance, when their opponent makes an
unexpected or irrational move.
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Strategy Logic

Motivation II

For instance, assume that you play a video game by using a
gamepad or a keyboard, and in the middle of the game, one of the
buttons on the gamepad brakes. Hence, from that moment on, you
will not be able to make some moves in the game that are
controlled by that button on the gamepad. This is most certainly
is not part of your strategy. Therefore, you will need to revise your
strategy in such a way that some moves will be excluded from your
strategy from then on. However, for your opponent, that is not the
case as she can still make all the moves available to her.
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Strategy Logic

Strategy Logic I

Consider a game played between two players given by the set
N = {1, 2} and a single admissible set of moves Σ for both
(Ramanujam & Simon, 2008a; Ramanujam & Simon, 2008b). Let
T = (S ,⇒, s0) be a tree rooted at s0, on the set of vertices S . A
partial function ⇒: S × Σ→ S specifies the labeled edges of such
a tree where labels represent the moves at the states. The
extensive form game tree, then, is a pair T = (T, λ) where T is a
tree as defined before, and λ : S → N specifies whose turn it is at
each state. A strategy µi for a player i ∈ N is a function
µi : S i → Σ where S i = {s ∈ S : λ(s) = i}.
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Strategy Logic

Strategy Logic II

For player i and strategy µi , the strategy tree
Tµ = (Sµ,⇒µ, s0, λµ) is the least subtree of T satisfying the
following two conditions:

1. s0 ∈ Sµ;

2. For any s ∈ Sµ, if λ(s) = i , then there exists a unique s ′ ∈ Sµ
and action a such that s

a⇒µ s ′. Otherwise, if λ(s) 6= i , then

for all s ′ with s
a⇒ s ′ for some a, we have s

a⇒µ s ′.
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Strategy Logic

Strategy Logic III

The most basic constructions in SL are the strategy specifications.
First, for a given countable set X , a set of formulas BF (X ) is
defined as follows, for a ∈ Σ:

BF (X ) := x ∈ X | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ

Let P i be a countable set of atomic observables for player i , with
P = P1 ∪ P2. The syntax of strategy specifications is given as
follows for ϕ ∈ BF (P i ):

Strat i (P i ) := [ϕ→ a]i | σ1 + σ2 | σ1 · σ2
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Strategy Logic

Strategy Logic IV

The specification [ϕ→ a]i at player i ’s position stands for “play a
whenever ϕ holds”. The specification σ1 + σ2 means that the
strategy of the player conforms to the specification σ1 or σ2 and
σ1 · σ2 means that the strategy of the player conforms to the
specifications σ1 and σ2. By the abuse of the notation, we will use
↔ to denote the equivalence of specifications.
Let M = (T ,V ) where T = (S ,⇒, s0, λ) is an extensive form
game tree as defined before, and V is a valuation function
(V : S → 2P) for the set of propositional variables P. The truth of
a formula ϕ ∈ BF (P) is given as usual for the propositional,
Boolean and modal formulas.
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Strategy Logic

Strategy Logic V

The notion “strategy µ conforms to specification σ for player i at
state s” (notation µ, s |=i σ) is defined as follows, where outµ(s)
denotes the unique outgoing edge at s with respect to µ.
µ, s |=i [ϕ→ a]i iff M, s |= ϕ implies outµ(s) = a
µ, s |=i σ1 + σ2 iff µ, s |=i σ1 or µ, s |=i σ2

µ, s |=i σ1 · σ2 iff µ, s |=i σ1 and µ, s |=i σ2
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Strategy Logic

Strategy Logic VI

Now, based on the strategy specifications, the syntax of the
strategy logic SL is given as follows:

p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | (σ)i : a | σ  i ψ

for propositional variable p ∈ P, action a ∈ Σ, strategy
σ ∈ Strat i (P i ), and Boolean formula ψ over P i . The intuitive
reading of (σ)i : a is that at the current state the strategy
specification σ for player i suggests that the move a can be played.
The intuitive meaning of σ  i ψ is that following strategy σ player
i can ensure ψ. The other Boolean connectives and modalities are
defined as usual.
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Strategy Logic

Strategy Logic VII

M, s |= 〈a〉ϕ iff ∃s such that s
a⇒ s ′ and M, s ′ |= ϕ

M, s |= (σ)i : a iff a ∈ σ(s)
M, s |= σ  i ψ iff ∀s ′ such that s ⇒∗σ s ′ in Ts |σ,

we have M, s ′ |= ψ ∧ (turni → enabledσ)
where σ(s) denotes the set of the enabled moves at state s in
strategy σ, and ⇒∗σ denotes the reflexive transitive closure of ⇒σ.
SL has been given a rather complex axiomatization and rules of
inferences. However, it is complete for its semantics (Ramanujam
& Simon, 2008a; Ramanujam & Simon, 2008b).
Yet, it was not known that if SL was decidable or not. Similarly,
the complexity of the satisfiability problem was not known.
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Dynamic Strategies

Restricted Strategy Logic I

We denote the move restriction by [σ!a]i for a strategy
specification σ and action a for player i . Informally, after the move
restriction of σ by a, player i will not be able to make an a move.
We incorporate restrictions to SL obtain Restricted Strategy Logic
(RSL), and we incorporate these new dynamic operators at the
level of strategy specifications.
In SL, recall that strategies are functions. Therefore, they only
produce one move per state. However, our dynamic take in
strategies cover more general cases where strategies can offer a set
of moves to the player. Thus, in RSL, we define strategy µi as
µi : S i → 2Σ. By outrµi (s) we will denote the set of moves
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Dynamic Strategies

Restricted Strategy Logic II

returned by µi at s. Then, the extended syntax of strategy
specifications for player i is given as follows.

Strat i (P i ) := [ψ → a]i | σ + σ | σ · σ | [σ!a]i

Notice that the restrictions affect only the player who gets a move
restriction. In other words, if a is prohibited to player i , it does not
mean that some other player j cannot make an a move.
Once a move is restricted at a state, we will prone the strategy
tree removing the prohibited move from that state on. Therefore,
given µi : S i → 2Σ, we define the updated strategy relation
µi !a : S i → 2Σ−{a}.
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Dynamic Strategies

Restricted Strategy Logic III

We are now ready to define confirmation of restricted
specifications to strategies. Note that we skip the cases for · and
+ as they are exactly the same.
µ, s |=i [ϕ→ a]i iff M, s |= ϕ implies a ∈ outrµ(s)
µi , s |=i [σ!a]i iff a /∈ outrµi (s) and µ!a, s |=i σ

where

µ!a is the updated strategy tree.
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Dynamic Strategies

RSL: Completeness and Complexity I

Here is the the syntax of RSL, which is the same as that of SL:

p | (σ)i : a | ¬ϕ | ϕ1 ∧ ϕ2 | 〈a〉ϕ | σ  i ψ

The semantics and the truth definitions of the formulas are defined
as earlier with the exception of strategy specifications for
restrictions. The axiom system of RSL consists of the axioms and
rules of SL together with the following axioms for the added
specification construct:

I (σ!a)i : c ↔ turni ∧ ¬((σ)i : a) ∧ (σ)i : c

Theorem
(σ!a)i : a↔ ⊥
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Dynamic Strategies

RSL: Completeness and Complexity II

Conjecture

The axiom system of RSL is complete with respect to the given
semantics.

Conjecture

The model checking problems for SL and RSL are in PSPACE.
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Thanks!

Thanks for your attention!

Talk slides and the papers are available at:

www.CanBaskent.net
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Thanks!

References I

Abramsky, Samson, & Zvesper, Jonathan. 2010.
From Lawvere to Brandenburger-Keisler: Interactive forms of diagonalization and self-reference.
CoRR, abs/1006.0992.

Aczel, Peter. 1988.
Non-well-founded Sets.
Vol. 14.
CSLI Lecture Notes.

Artemov, S., Davoren, J. M., & Nerode, A. 1997 (June).
Modal Logics and Topological Semantics for Hybrid Systems.
Tech. rept. Mathematical Sciences Institute, Cornell University.

Artemov, Sergei. 2009a.
Intelligent Players.
Tech. rept. Department of Computer Science, The Graduate Center, The City University of New York.

Artemov, Sergei. 2009b.
Rational Decisions in Non-probablistic Setting.
Tech. rept. TR-2009012. Department of Computer Science, The Graduate Center, The City University of
New York.
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