Syllogisms in Aristotle and Boethius

Can BAŞKENT

ILLC, UvA

June 23, 2006
Categorical Syllogism in Aristotle
Definitions
Figures of Categorical Syllogism

Hypothetical Syllogism in Aristotle
Hints in Texts

Categorical Syllogism in Boethius
Boethius’ Definitions
Alterations

Hypothetical Syllogism in Boethius

Further Works
Syllogisms in Aristotle

Syllogisms in Aristotle
Back to the Basics

▶ All philosophers are mortal. [Major Premise]
▶ Socrates is a philosopher. [Minor Premise]
▶ Therefore, Socrates is mortal. [Conclusion]
Back to the Basics

- All philosophers are mortal. [Major Premise]
- Socrates is a philosopher. [Minor Premise]
- Therefore, Socrates is mortal. [Conclusion]
All philosophers are mortal. [Major Premise]
Socrates is a philosopher. [Minor Premise]
Therefore, Socrates is mortal. [Conclusion]
Categorical syllogism, is a kind of logical argument in which one proposition (the conclusion) is inferred from two others (the premises).
Aristotle’s Definition and Critics

“a discourse in which, certain things being stated, something other than what is stated follows of necessity from their being so. I mean by the last phrase that they produce the consequence, and by this, that no further term is required from without to make the consequence necessary.”

from Prior Analytics
Aristotle’s Definition and Critics

“a discourse in which, certain things being stated, something other than what is stated follows of necessity from their being so. I mean by the last phrase that they produce the consequence, and by this, that no further term is required from without to make the consequence necessary.”

Rusinoff: This definition does not distinguish syllogism from other forms of inference.
Categorical Sentences

(A) A belongs to all B. \((AaB) \)
(I) A belongs to some B. \((AiB) \)
(E) A does not belong to any B. \((AeB) \)
(O) A does not belong to some B. \((AoB) \)
Categorical Sentences

\[(A)\] A belongs to all \(B\). \((AaB)\)
\[(I)\] A belongs to some \(B\). \((AiB)\)
\[(E)\] A does not belong to any \(B\). \((AeB)\)
\[(O)\] A does not belong to some \(B\). \((AoB)\)
Categorical Sentences

(A) A belongs to all B. \((AaB)\)

(I) A belongs to some B. \((AiB)\)

(E) A does not belong to any B. \((AeB)\)

(O) A does not belong to some B. \((AoB)\)
Categorical Sentences

(A) A belongs to all B. \((AaB)\)

(I) A belongs to some B. \((AiB)\)

(E) A does not belong to any B. \((AeB)\)

(O) A does not belong to some B. \((AoB)\)
Three Figures

<table>
<thead>
<tr>
<th>Figure I</th>
<th>Figure II</th>
<th>Figure III</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A - B$</td>
<td>$B - A$</td>
<td>$A - B$</td>
</tr>
<tr>
<td>$B - C$</td>
<td>$B - C$</td>
<td>$C - B$</td>
</tr>
<tr>
<td>$A - C$</td>
<td>$A - C$</td>
<td>$A - C$</td>
</tr>
</tbody>
</table>

where A is the major, B is the middle and C is the minor term.
Conversion Rules

- $AaB \Rightarrow BiA.$
- $AiB \equiv BiA.$
- $AeB \equiv BeA.$
Conversion Rules

- $AaB \Rightarrow BiA$.
- $AiB \equiv BiA$.
- $AeB \equiv BeA$.
Conversion Rules

- $AaB \Rightarrow BiA$.
- $AiB \equiv BiA$.
- $AeB \equiv BeA$.
Syllogisms in Aristotle and Boethius

- Categorical Syllogism in Aristotle
- Figures of Categorical Syllogism

Four Figures - 1

First Figure

<table>
<thead>
<tr>
<th></th>
<th>Barbara</th>
<th>Celarent</th>
<th>Darii</th>
<th>Ferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaB</td>
<td>AaB</td>
<td>AaB</td>
<td>AeB</td>
<td></td>
</tr>
<tr>
<td>BaC</td>
<td>BaC</td>
<td>BiC</td>
<td>BiC</td>
<td></td>
</tr>
<tr>
<td>AaC</td>
<td>AeC</td>
<td>AiC</td>
<td>AoC</td>
<td></td>
</tr>
</tbody>
</table>

Second Figure

<table>
<thead>
<tr>
<th></th>
<th>Camestres</th>
<th>Cesare</th>
<th>Festino</th>
<th>Baroco</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaA</td>
<td>BeA</td>
<td>BeA</td>
<td>BaA</td>
<td></td>
</tr>
<tr>
<td>BeC</td>
<td>BaC</td>
<td>BiC</td>
<td>BoC</td>
<td></td>
</tr>
<tr>
<td>AeC</td>
<td>AeC</td>
<td>AoC</td>
<td>AoC</td>
<td></td>
</tr>
</tbody>
</table>
Third Figure

<table>
<thead>
<tr>
<th>Darapti</th>
<th>Felapton</th>
<th>Disamis</th>
<th>Datisi</th>
<th>Bocardo</th>
<th>Ferison</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AaB)</td>
<td>(AeB)</td>
<td>(AiB)</td>
<td>(AaB)</td>
<td>(AoB)</td>
<td>(AeB)</td>
</tr>
<tr>
<td>(CaB)</td>
<td>(CaB)</td>
<td>(CaB)</td>
<td>(CiB)</td>
<td>(CaB)</td>
<td>(CiB)</td>
</tr>
<tr>
<td>(AiC)</td>
<td>(AoC)</td>
<td>(AiC)</td>
<td>(AiC)</td>
<td>(AoC)</td>
<td>(AoC)</td>
</tr>
</tbody>
</table>

Fourth Figure [not mentioned in Aristotle explicitly]

<table>
<thead>
<tr>
<th>Bramantip</th>
<th>Camenas</th>
<th>Dimaris</th>
<th>Fesapo</th>
<th>Fresison</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BaA)</td>
<td>(BaA)</td>
<td>(BiA)</td>
<td>(BeA)</td>
<td>(BeA)</td>
</tr>
<tr>
<td>(CaB)</td>
<td>(CeB)</td>
<td>(CaB)</td>
<td>(CaB)</td>
<td>(CiB)</td>
</tr>
<tr>
<td>(AiC)</td>
<td>(AeC)</td>
<td>(AiC)</td>
<td>(AoC)</td>
<td>(AoC)</td>
</tr>
</tbody>
</table>
First Figure

<table>
<thead>
<tr>
<th></th>
<th>Barbara</th>
<th>Celarent</th>
<th>Darii</th>
<th>Ferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaB</td>
<td>AeB</td>
<td>AaB</td>
<td>AeB</td>
<td></td>
</tr>
<tr>
<td>BaC</td>
<td>BaC</td>
<td>BiC</td>
<td>BiC</td>
<td></td>
</tr>
<tr>
<td>AaC</td>
<td>AeC</td>
<td>AiC</td>
<td>AoC</td>
<td></td>
</tr>
</tbody>
</table>
First Figure as a Set of Axioms

<table>
<thead>
<tr>
<th></th>
<th>Barbara</th>
<th>Celarent</th>
<th>Darii</th>
<th>Ferio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AaB</td>
<td>AeB</td>
<td>AaB</td>
<td>AeB</td>
</tr>
<tr>
<td></td>
<td>BaC</td>
<td>BaC</td>
<td>BiC</td>
<td>BiC</td>
</tr>
<tr>
<td></td>
<td>AaC</td>
<td>AeC</td>
<td>AiC</td>
<td>AoC</td>
</tr>
</tbody>
</table>

- First figure was evidently clear for Aristotle. *Nothing needs to be added to make it more evident.*
- No proof for the first figure was given.
- Reduced other figures to the first figure.
First Figure as a Set of Axioms

<table>
<thead>
<tr>
<th></th>
<th>Barbara</th>
<th>Celarent</th>
<th>Darii</th>
<th>Ferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaB</td>
<td>AeB</td>
<td>AaB</td>
<td>AeB</td>
<td></td>
</tr>
<tr>
<td>BaC</td>
<td>BaC</td>
<td>BiC</td>
<td>BiC</td>
<td></td>
</tr>
<tr>
<td>AaC</td>
<td>AeC</td>
<td>AiC</td>
<td>AoC</td>
<td></td>
</tr>
</tbody>
</table>

- First figure was evidently clear for Aristotle. *Nothing needs to be added to make it more evident.*
- No proof for the first figure was given.
- Reduced other figures to the first figure.
First Figure as a Set of Axioms

<table>
<thead>
<tr>
<th></th>
<th>Barbara</th>
<th>Celarent</th>
<th>Darii</th>
<th>Ferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaB</td>
<td>AeB</td>
<td>AaB</td>
<td>AeB</td>
<td></td>
</tr>
<tr>
<td>BaC</td>
<td>BaC</td>
<td>BiC</td>
<td>BiC</td>
<td></td>
</tr>
<tr>
<td>AaC</td>
<td>AeC</td>
<td>AiC</td>
<td>AoC</td>
<td></td>
</tr>
</tbody>
</table>

- First figure was evidently clear for Aristotle. *Nothing needs to be added to make it more evident.*
- No proof for the first figure was given.
- Reduced other figures to the first figure.
Excerpt from *Prior Analytics*

- It is possible that the premises from which the syllogism is formed are true; and it is possible, likewise, that they are false, or that one is true and the other false. The conclusion is necessarily either true or false.

- If two things are related to each other in such a way that the existence of one entails necessarily the existence of the other, [then] the non-existence of the last one will entail the non-existence of the first.

- It is impossible that B should necessarily be great since A is white and that B should necessarily be great since A is not white. For whenever since this, A, is white it is necessary that, B, should be great, and since B is great that C should not be white, then it is necessary if is white that C should not be white.
Excerpt from *Prior Analytics*

- It is possible that the premises from which the syllogism is formed are true; and it is possible, likewise, that they are false, or that one is true and the other false. The conclusion is necessarily either true or false.

- If two things are related to each other in such a way that the existence of one entails necessarily the existence of the other, [then] the non-existence of the last one will entail the non-existence of the first.

- It is impossible that B should necessarily be great since A is white and that B should necessarily be great since A is not white. For whenever since this, A, is white it is necessary that, B, should be great, and since B is great that C should not be white, then it is necessary if is white that C should not be white.
Excerpt from *Prior Analytics*

- It is possible that the premises from which the syllogism is formed are true; and it is possible, likewise, that they are false, or that one is true and the other false. The conclusion is necessarily either true or false.

- If two things are related to each other in such a way that the existence of one entails necessarily the existence of the other, then the non-existence of the last one will entail the non-existence of the first.

- It is impossible that B should necessarily be great since A is white and that B should necessarily be great since A is not white. For whenever since this, A, is white it is necessary that, B, should be great, and since B is great that C should not be white, then it is necessary if is white that C should not be white.
Interpretation

- From true premises, one cannot draw a false conclusion, but from false premises one can draw a true conclusion.

- If when A is, B must be, then when B is not, necessarily A cannot be.

- If from A follows necessarily B, and from B follows non-C, then necessarily from A follows non-C.
Interpretation

- From true premises, one cannot draw a false conclusion, but from false premises one can draw a true conclusion.
- If when A is, B must be, then when B is not, necessarily A cannot be.
- If from A follows necessarily B, and from B follows non-C, then necessarily from A follows non-C.
From true premises, one cannot draw a false conclusion, but from false premises one can draw a true conclusion.

If when A is, B must be, then when B is not, necessarily A cannot be.

If from A follows necessarily B, and from B follows non-C, then necessarily from A follows non-C.

Opinions on the relation between HS and Aristotle - 1

Dumitriu (*History of Logic*): Aristotle did *not* develop a theory of HS. For Aristotle, reasoning must lead to necessary conclusions, not to *per accidens* conclusions.

Kneale and Kneale (*The Development of Logic*): Aristotle did not recognize the conditional form of statement and argument based on it as an object of logical inquiry.
Opinions on the relation between HS and Aristotle - 2

Stoics, having nominalist concept of truth, studied HS extensively.

Peripatetic School also studied HS extensively.

Theophrastus and Eudemus were the leading figures.
Syllogisms in Anicius Manlius Severinus Boethius
Belong versus Is

(A’) Every B is A.
(I’) Some B is A.
(E’) No B is A.
(O’) Some B is not A.
Belong versus Is

\((A')\) Every \(B\) is \(A\).

\((I')\) Some \(B\) is \(A\).

\((E')\) No \(B\) is \(A\).

\((O')\) Some \(B\) is not \(A\).
Belong versus Is

\((A') \) Every \(B \) is \(A \).
\((I') \) Some \(B \) is \(A \).
\((E') \) No \(B \) is \(A \).
\((O') \) Some \(B \) is not \(A \).
Belong versus Is

(A') Every \(B \) is \(A \).

(I') Some \(B \) is \(A \).

(E') No \(B \) is \(A \).

(O') Some \(B \) is not \(A \).
Square of Opposition

Every S is P

A

CONTRARIES

SUBALTERNS

Some S is P

CONTRADICTIONS

SUBCONTRARIES

Some S is not P

No S is P

E

SUBALTERNS

CONTRARIES
Aristotle vs Boethius: Categorical Sentences

Aristotle
- A belongs to all B
- A belongs to some B
- A does not belong to any B
- A does not belong to some B

Boethius
- Every B is A.
- Some B is A.
- No B is A.
- Some B is not A.
Critics - 1

Boethius was accused of obscuring the theory of the syllogism, since his translation of belong to is, is claimed to make it unclear why the first figure (of Aristotle) was evident and was not in need of a proof.
Boethius added a fourth conversion rule: as universal affirmative can be converted to particular affirmative, universal negative can be converted to particular negative:

\[AeB \Rightarrow AoB \]
Critics - 3

Boethius’ Four Categorical Sentences

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>A</td>
<td>A - B</td>
<td>B - A</td>
<td>A - B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>C - B</td>
<td>B - C</td>
<td>B - C</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>C - A</td>
<td>C - A</td>
<td>C - A</td>
</tr>
</tbody>
</table>
Categorical Sentences: Aristotle vs. Boethius

Boethius’ Four Categorical Sentences

<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B - A</td>
<td>A - B</td>
<td>B - A</td>
<td>A - B</td>
</tr>
<tr>
<td>C - B</td>
<td>C - B</td>
<td>B - C</td>
<td>B - C</td>
</tr>
<tr>
<td>C - A</td>
<td>C - A</td>
<td>C - A</td>
<td>C - A</td>
</tr>
</tbody>
</table>

Aristotle’s Three Categorical Sentences

<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>B - A</td>
<td>A - B</td>
</tr>
<tr>
<td>B - C</td>
<td>B - C</td>
<td>C - B</td>
</tr>
<tr>
<td>A - C</td>
<td>A - C</td>
<td>A - C</td>
</tr>
</tbody>
</table>
Boethius extended and enlarged Aristotle’s works on HS.

“Devoted a lot of his time to a tiresome but efficient work” on this.

For this reason he was considered for a long time as the discoverer of HS.
Boethius extended and enlarged Aristotle’s works on HS.

“Devoted a lot of his time to a tiresome but efficient work” on this.

For this reason he was considered for a long time as the discoverer of HS.
Introduction - 1

- Boethius extended and enlarged Aristotle’s works on HS.
- “Devoted a lot of his time to a tiresome but efficient work” on this.
- For this reason he was considered for a long time as the discoverer of HS.
Syllogisms in Aristotle and Boethius

Hypothetical Syllogism in Boethius

Introduction - 2

- Draws distinction between categorical sentences and hypothetical sentences.
- Relates the theory of HS with Theophrastus and Eudemos.
- Claimed “Aristotle wrote nothing” on HS, could not find any representation of HS in Latin scholars.
Introduction - 2

- Draws distinction between categorical sentences and hypothetical sentences.
- Relates the theory of HS with Theophrastus and Eudeomos.
- Claimed “Aristotle wrote nothing” on HS, could not find any representation of HS in Latin scholars.
Introduction - 2

- Draws distinction between categorical sentences and hypothetical sentences.
- Relates the theory of HS with Theophrastus and Eudeomos.
- Claimed “Aristotle wrote nothing” on HS, could not find any representation of HS in Latin scholars.
Hypothetical Syllogism for Boethius - 1

Two kinds of hypothetical sentence: *simple* and *complex*. Simple ones are of the form “If A is, then B is” whereas the complex ones are of the form “If A is, then, in case B is, C is too”. He gave the four possible examples:

1. “If it is day, it is light”.
2. “If it is not an animal, it is not a man.”
3. “If it is day, it is not night.”
4. “If it is not day, it is night.”
Distinguished between *perfect* and *imperfect* HS. Perfect HS requires no demonstration whereas imperfect one needs a demonstration.
Boethius considered “accidental” conditionals and gave the following example:

If fire is hot, the heavens are spherical.

It is clear that the statement is true, as both the antecedant and consequent are true. However, there is no relation between what both sentence talk about. This is what makes this kind of sentences *accidental.*
Algebraizing Syllogisms

Susan Russinof in discussed syllogisms in an algebraic setting and gives an algebraic interpretation of categorical statements quoting Christine Ladd-Franklin’s 1883 paper:

(A) AaB becomes $A < B$ or $A - B = 0$

(I) AiB becomes $A < -B$ or $A.B = 0$

(E) AeB becomes $(A < -B)'$ or $A.B \neq 0$

(O) AoB becomes $(A < B)'$ or $A - B \neq 0$

Thanks for your attention