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Institute for Logic, Language and Computation
Universiteit van Amsterdam

cbaskent@science.uva.nl www.illc.uva.nl/∼cbaskent

July 25, 2007



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Outlook of the Talk

I Introduction to SSL

I Truth Preserving Operations in SSL

I Public Announcement Logic in SSL

I Controlled Shrinking in SSL

I Multi-agent in SSL: an effort

I Conclusion and Future Work



Topics in Subset Space Logic

Introduction to Subset Space Logic

Motivations

Vickers’ Example

“My baby has green eyes.”
The obvious question is, “Is this true or false?”.
First, we may agree that her eyes really are green - we can affirm
the assertion.
Second, we may agree that her eyes are some other colour, such as
brown - we can refute the assertion.
Third, we may fail to agree; but perhaps if we hire a powerful
enough colour analyser, that may decide us.
etc...
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Motivations

Vicker’s Example

One can come up with the following diagram (Vickers).
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Introduction to Subset Space Logic

Motivations

Vickers’ Example - Conclusion

What is crucial in Vickers’ analysis is that statements are
affirmable or refutable in a finite amount of time with spending
finite amount of effort.

He defines: an assertion is affirmative, if and only if it is true
precisely in the circumstances when it can be affirmed. Likewise,
an assertion is refutative if and only if it is false precisely in the
circumstances when it can be refuted.



Topics in Subset Space Logic

Introduction to Subset Space Logic

Motivations

Vickers’ Example - Conclusion

What is crucial in Vickers’ analysis is that statements are
affirmable or refutable in a finite amount of time with spending
finite amount of effort.

He defines: an assertion is affirmative, if and only if it is true
precisely in the circumstances when it can be affirmed. Likewise,
an assertion is refutative if and only if it is false precisely in the
circumstances when it can be refuted.



Topics in Subset Space Logic

Introduction to Subset Space Logic

Motivations

Vickers’ Example - Conlusion

“[N]otion of effort enters in topology. Thus if we are at some point
at s and make a measurement, we will then discover that we are in
some neighborhood U of s, but not know where. If we make my
measurement finer, then U will shrink, say, to a smaller
neighborhood V .” [Moss and Parikh]

Therefore, by spending some effort, we eliminate some of the
possibilities, and finally obtain a smaller set of possibilities. The
smaller the set of observation is, the larger the information we
have.

Therefore, as it was also observed in the above example, to gain
knowledge, we need to spend some effort.
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Definitions

SSL: Model and Language

A subset space model is a triple S = 〈S , σ, v〉 where 〈S , σ〉 is a
subset frame, v : P → ℘(S) is a valuation function for the
countable set of propositional variables P

The language LS of SSL is:
p | > | ¬ϕ | ϕ ∧ ψ | Kϕ | �ϕ
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Introduction to Subset Space Logic

Definitions

SSL: Semantics

s,U |= p if and only if s ∈ v(p)
s,U |= ϕ ∧ ψ if and only if s,U |= ϕ and s,U |= ψ
s,U |= ¬ϕ if and only if s,U 6|= ϕ
s,U |= Kϕ if and only if t,U |= ϕ for all t ∈ U
s,U |= �ϕ if and only if s,V |= ϕ for all V ∈ σ

such that s ∈ V ⊆ U
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Introduction to Subset Space Logic

Definitions

Neighborhood Situation

(s,U) is called a neighborhood situation if U is a neighborhood of
s, i.e. if s ∈ U.

L0: be the propositional language generated by the set of
propositional letters P.
Then, for the subset space frame S = 〈S , σ〉, if ϕ ∈ L0, then we
have (ϕ)S ⊆ S whereas if ϕ ∈ LS − L0, we then have
(ϕ)S ⊆ S × σ.
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Introduction to Subset Space Logic

Definitions

Axioms

1. All the substitutional instances of the tautologies of the
classical propositional logic

2. (A→ �A) ∧ (¬A→ �¬A) for atomic sentence A

3. K(ϕ→ ψ)→ (Kϕ→ Kψ)

4. Kϕ→ (ϕ ∧ KKϕ)

5. Lϕ→ KLϕ Euclidean

6. �(ϕ→ ψ)→ (�ϕ→ �ψ)

7. �ϕ→ (ϕ ∧��ϕ)

8. K�ϕ→ �Kϕ Cross-Axiom

K is S5 and � is S4.
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Definitions

Cross Axiom Models: An alternative interpretation

A cross axiom frame is a tuple J = 〈J, L−→, ♦−→〉, such that J is a

non-empty set,
L−→ is an equivalence relation on J and

♦−→ is a

preorder on J where the following property holds: If i
♦−→ j

L−→ k ,

then there is some l such that i
L−→ l

♦−→ k .
A cross axiom model is a cross axiom frame together with an
interpretation I of the atomic propositions of the language of

subset spaces. I must satisfy the condition that if i
♦−→ j , then

i ∈ I (A) iff j ∈ I (A).

Proposition

Every subset space has a corresponding cross axiom model.
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Completeness and Decidability

Completeness

SSL is strongly complete and decidable.

NOT trivial!
The reason for that is the fact that at the level of maximally
consistent theories, there is no known way to define a
corresponding subset space structure.
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Completeness and Decidability

Completeness: what then?

To obtain the subsets in the collection of maximally consistent
sets, an auxiliary pre-order and an anti-tone mapping is needed.

〈Q,≤,⊥〉 is the pre-order with the least element and
f : 〈Q,≤,⊥〉 → 〈℘(S)∗,⊇,S〉. For p, q ∈ P, p ≤ q iff
f (p) ⊇ f (q).
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Introduction to Subset Space Logic

Completeness and Decidability

Decidability

Finite model property fails in SSL.
Consider �(♦ϕ ∧ ♦¬ϕ) at (s,U) where U is the minimal open
about s.

Decidability then can be shown on Cross Axiom models by
filtration as Cross Axiom models has a finite model property.
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Additional Properties

Directed, Intersection and Lattice Frames

A subset frame S is called a directed frame if for every s ∈ S and
U,V ∈ σ with s ∈ U and s ∈ V , there exists a W ∈ σ such that
s ∈W and W ⊆ U ∩ V .

A subset frame S is called an intersection frame if whenever
U,V ∈ σ and U ∩ V 6= ∅, then U ∩ V ∈ σ as well.

A subset frame S is called a lattice frame if it is an intersection
frame which is also closed under finite unions; and is called a
complete lattice frame if it is closed under arbitrary intersections
and unions.
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Introduction to Subset Space Logic

Additional Properties

Defining Properties

WDA ♦�ϕ→ �♦ϕ
sound for weakly directed spaces

UA ♦ϕ ∧ L♦ψ → ♦(♦ϕ ∧ L♦ψ ∧ K♦L(ϕ ∨ ψ))
sound for subset spaces closed under binary unions

WUA L♦ϕ ∧ L♦ψ → L♦(L♦ϕ ∧ L♦ψ ∧ K♦L(ϕ ∨ ψ))
weaker than UA

CI �♦ϕ→ ♦�ϕ
sound for subset spaces closed under all intersections

Mn (�L♦ϕ ∧ ♦Kψ1 ∧ · · · ∧ ψn)
→ L(♦ϕ ∧ ♦Kψ1 ∧ · · · ∧ ♦Kψn)
WD and all Mn are complete for directed spaces

Table: Additional properties in subset spaces and their respective defining
formulae (from Moss et al.).
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Introduction to Subset Space Logic

Extending the Basic Language

Overlap Modality

s,U |= Oϕ iff ∀U ′ ∈ σ : (s ∈ U ′ → s,U ′ |= ϕ)

� is a special case of O.

Overlap operator was designed to enable us to quantify “not only
downwards, but also diagonally” among the set of observations
(Heinemann).
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Expressivity in SSL

Topological Definability

Some Basic Topological Properties in SSL

Proposition

ϕ is open if and only if ϕ→ ♦Kϕ is valid.

Proposition

Dually, ϕ is closed if and only if �Lϕ→ ϕ.

Proposition

v(p) is dense if and only if �Lp holds. Similarly, v(p) is nowhere
dense if and only if ♦L¬p is valid.
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Expressivity in SSL

Topological Definability

Topological Interpretation vs. SSL

Define a translation map t : L → LS
pt = p for propositional letter p
(ϕ ∧ ψ)t = ϕt ∧ ψt for the formulae ϕ,ψ in L
(¬ϕ)t = ¬(ϕt) for the formulae ϕ in L
(I(ϕ))t = ♦Kϕt for the formulae ϕ in L

t is not onto! Lϕ is not definable in L



Topics in Subset Space Logic

Expressivity in SSL

Topological Definability

Topological Interpretation vs. SSL

Define a translation map t : L → LS
pt = p for propositional letter p
(ϕ ∧ ψ)t = ϕt ∧ ψt for the formulae ϕ,ψ in L
(¬ϕ)t = ¬(ϕt) for the formulae ϕ in L
(I(ϕ))t = ♦Kϕt for the formulae ϕ in L

t is not onto! Lϕ is not definable in L



Topics in Subset Space Logic

Expressivity in SSL

Truth Preserving Operations

Disjoint Unions

Definition
Two subset space models are disjoint if their domain contains no
common element. For disjoint subset space models
Si = 〈Si , σi , vi 〉, for i ∈ I their disjoint union is the structure
S =

⊎
i∈I Si = 〈S , σ, v〉 where S =

⋃
i∈I Si , σ =

⋃
i∈I σi and

v(p) =
⋃

i∈I vi (p).

Theorem
For disjoint subset space models Si for i ∈ I and for each
neighborhood situation (s,U) in Si , we have s,U |=S ϕ if and only
if s,U |=Si ϕ, for each formula ϕ in the language of subset space
logic LS .

Note that this definition does not preserve topological properties.
However, another definition which preserves topological properties
can be given.
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Expressivity in SSL

Truth Preserving Operations

Generated Subset Spaces

We can throw away the points at which we do not have any
observations.

Proposition

For S = 〈S , σ, v〉, let S ′ = S −{s : s /∈ ∪σ} and v ′(p) = v(p)∩ S ′.
Then S ′ = 〈S ′, σ, v ′〉 and S = 〈S , σ, v〉 satisfy the same formulae.



Topics in Subset Space Logic

Expressivity in SSL

Truth Preserving Operations

Generated Subset Spaces

Definition
Let S = 〈S , σ, v〉 be a subset space model. Let (s,U) be the
designated neighborhood situation. Then we obtain the generated
subset space S ′ = 〈S ′, σ′, v ′〉 of S as follows.

I σ′ := σ − {V ∈ σ : V 6⊆ U}
I S ′ := S − ∪σ′

I v ′(p) := v(p) ∩ S ′ for each propositional letter p.

Proposition

For each s ∈ S ′, we have s,U |=S ϕ if and only if s,U |=S′ ϕ.
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Truth Preserving Operations

Bisimulation

Definition
For, S = 〈S , σ, u〉 and T = 〈T , τ, v〉 a topologic bisimulation is a
non-empty relation � for neighborhood situations in
(S × σ)× (T × τ) such that if (s,U)� (t,V ), then we have:

1. Base Condition
s ∈ u(p) if and only if t ∈ v(p) for each p

2. Back Conditions
2.1 ∀t ′ ∈ V there exists s ′ ∈ U with (s ′,U)� (t ′,V ).
2.2 ∀V ′ ⊆ V such that t ∈ V ′, there is U ′ ⊆ U with s ∈ U ′ such

that (s,U ′)� (t,V ′)

3. Forth Conditions
3.1 ∀s ′ ∈ U there exists t ′ ∈ V with (s ′,U)� (t ′,V ).
3.2 ∀U ′ ⊆ U such that s ∈ U ′, there is V ′ ⊆ V with t ∈ V ′ such

that (s,U ′)� (t,V ′).
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Truth Preserving Operations

Bisimulation Invariance

Theorem (Bisimulation Invariance for Subset Spaces)

If (s,U)� (t,V ) then they satisfy the same formulae.

Converse is true only under the special conditions.

Theorem
Let S = 〈S , σ, u〉 and T = 〈T , τ, v〉 be two finite subset space.
Then for each neighborhood situations (s,U) in S × σ and (t,V )
in T × τ ; we have (s,U)� (t,V ) if and only if (s,U)! (t,V ).
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Truth Preserving Operations

Evaluation and Bisimulation Games

Position Player Admissible Moves

(⊥, (s,U)) ∃ ∅
(>, (s,U)) ∀ ∅
(p, (s,U)) with s ∈ v(p) ∀ ∅
(p, (s,U)) with s /∈ v(p) ∃ ∅
(ψ1 ∧ ψ2, (s,U)) ∀ {(ψ1, (s,U)), (ψ2, (s,U))}
(ψ1 ∨ ψ2, (s,U)) ∃ {(ψ1, (s,U)), (ψ2, (s,U))}
(Lψ, (s,U)) ∃ {(ψ, (t,U)) : t ∈ U}
(Kψ, (s,U)) ∀ {(ψ, (t,U)) : t ∈ U}
(♦ψ, (s,U)) ∃ {(ψ, (s,V )) : s ∈ V ⊆ U}
(�ψ, (s,U)) ∀ {(ψ, (s,V )) : s ∈ V ⊆ U}

Adequacy Theorems for Evaluation and Bisimulation games follow.
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Truth Preserving Operations

Evaluation and Bisimulation Games in Extended Languages

Position Player Admissible Moves
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Public Announcement Logic

PAL in Kripke Frames

Semantics

Definition
Let M = 〈W ,R,V 〉 be a model and i be an agent. For atomic
propositions, negations and conjunction the definition is as usual.
For modal operators, we have the following semantics:
M,w |= Kiϕ iff M, v |= ϕ for each v such that (w , v) ∈ Ri

M,w |= [ϕ]ψ iff M,w |= ϕ implies M|ϕ,w |= ψ

Here the updated model M|ϕ = 〈W ′,R ′,V ′〉 is defined by
restricting M to those states where ϕ holds.
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Public Announcement Logic

PAL in Kripke Frames

Reduction Axioms

The proof system of public announcement logic is the proof system
of multi-modal S5 epistemic logic with the following additional
axioms.

Atoms [ϕ]p ↔ (ϕ→ p)
Partial Functionality [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

Distribution [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
Knowledge Announcement [ϕ]Kiψ ↔ (ϕ→ Ki [ϕ]ψ)

The rule of inference for [∗] is called the announcement
generalization and is described as follows.

From ` ψ, derive ` [ϕ]ψ.
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Public Announcement Logic

PAL in SSL

Semantics

The semantics for topologic PAL differs only on public
announcement operator whose semantics is given as follows:

s,U |= [ϕ]ψ if and only if s,U |= ϕ implies s,Uϕ |= ψ

where Uϕ = U ∩ (ϕ)

Compare: M,w |= [ϕ]ψ iff M,w |= ϕ implies M|ϕ,w |= ψ
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Public Announcement Logic

PAL in SSL

Axioms

Therefore, it is easy to see that the following axiomatize the
topologic-PAL:

Atoms [ϕ]p ↔ (ϕ→ p)
Partial Functionality [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

Distribution [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
Knowledge Announcement [ϕ]Kψ ↔ (ϕ→ K[ϕ]ψ)

Shrinking Reduction [ϕ]�ψ ↔ (ϕ→ �[ϕ]ψ)
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Public Announcement Logic

PAL in SSL

Completeness

Theorem (Completeness of Topologic PAL)

Topologic PAL is complete with respect to the axiom system given
above.

Proof.
By reduction axioms we can reduce each formula in the language
of topologic PAL to a formula in the language of (basic) topologic.
As topologic is complete, so is topologic PAL.
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Public Announcement Logic

PAL in SSL

PAL with Overlap Operator

Theorem (Reduction Axiom for Overlap Operator)

[ϕ]Oϕ↔ (ϕ→ O[ϕ]ψ) is sound.

Theorem (Completeness of Topologic PAL with Overlap)

Topologic public announcement logic with overlap operator is
complete.
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Controlled Shrinking in SSL

A Motivation

Philosophy of Science: Lakatos

Proofs and Refutations gives a rationally reconstructed account of
the methodological evaluation of Euler’s formula for polyhedra:
V − E + F = 2.
Starting from a collection of observations (or assertions) about
some peculiar properties of polyhedron, the arguments proceed by
reducing these observations (or assertions) by some mathematical
thought experiments as Lakatos himself called.
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Controlled Shrinking in SSL

A Motivation

Philosophy of Science: Lakatos

Let us see an example.
Let us assume (polyhedron,U) |= Vtorus − Etorus + Ftorus = 2
where U is the collection of observed polyhedral objects. Some
may be genuine polyhedra, some not.
Clearly, E (torus) = 0. Contradiction.
Then we need to get rid of some objects in U we previously
thought of genuine polyhedra. For example, we need to get rid of
torus, Klein bottle, Mobiüs strip etc. to get U ′ ⊂ U.
The formal way of achieving that is to introduce the Euler
characteristic function for both oriented and non-oriented objects.
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Controlled Shrinking in SSL

A Motivation

Philosophy of Science: Lakatos

The effort in this context corresponds to some mathematical
calculations or suggesting a counter example or even refuting a
counterexample.
For example, if we establish that the Euler formula holds for simply
connected polyhedra, then, we will discard some observations
about the polyhedra which are not simply connected - such as
torus. Hence, without changing our point of view, we changed our
neighborhood situation by considering some smaller set around the
reference point we are occupying.
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Controlled Shrinking in SSL

Formalization

Semantics

Let F be a collection of functions from S to S , and further let
F ⊆ F . Take two subset spaces S = 〈S , σ, v〉 and SF = 〈S , σF , v〉.
Here, σF is the image of each U ∈ σ under each function f ∈ F .
In other words, σF := {fU : f ∈ F ,U ∈ σ}. We will call SF the
image space of S under F .

Each function f ∈ F are contracting mappings intended to
represent the increase in the information. Hence, fU ⊆ U should
hold for each function f and for each observation set U
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Controlled Shrinking in SSL

Formalization

Semantics

s,U |=S [F ]ϕ iff s, fU |=SF ϕ for each f ∈ F

The dual of [F ] will be defined as follows:

s,U |=S 〈F 〉ϕ iff s, fU |=SF ϕ for some f ∈ F
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Controlled Shrinking in SSL

Formalization

Some Observations

1. [F ](ϕ→ ψ)→ ([F ]ϕ→ [F ]ψ)
It is easy to see that [F ] modality realizes the K axiom

2. [F ][F ]ϕ→ [F ]ϕ
This axiom is valid if F is closed under function
decomposition.

3. [F ]ϕ→ [F ][F ]ϕ
This axiom is valid if F is closed under function composition.

4. [F ]ϕ→ ϕ
This axiom is valid if the identity function idF is in F .

5. �ϕ→ [F ]ϕ

6. K[F ]ϕ→ [F ]Kϕ
This is the cross axiom for [F ] and K



Topics in Subset Space Logic

Multi-agent in SSL: an effort

Combining Information

Intersection of Observations

The intersection subset frame T = S ∩ S ′ is the frame T = 〈S , τ〉
where τ = {U : U ∈ σ1 ∩ σ2}.

Lemma
For downward closed set U, if s,U |=T ϕ, then s,U |=S ϕ and
s,U |=S′ ϕ for each formula ϕin the language of subset space logic.
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Multi-agent in SSL: an effort

Combining Information

Direct Intersections

Definition (Direct Intersections)

Given two subset space frames S1 = 〈S , σ1〉 and S2 = 〈S , σ2〉, the
direct intersection of S1 and S2 is S1 u S2 = 〈S , τ〉 where
τ = {X : X = U ∩ V where U ∈ σ1 and V ∈ σ2}.

Proposition

If s,U |=S1 ϕ and s,V |=S2 , then s,U ∩ V |=S1uS2 ϕ for each
ϕ ∈ LS .
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Combining Information

Direct Intersections
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Multi-agent in SSL: an effort

Combining Information

Product

A product multi-agent subset frame is a tuple S = 〈S ,
∏

i σi 〉
where 〈S , σi 〉 is a subset space frame for each agent i in the set of
agents I .

(s, ~U) is a neighborhood situation if s ∈ Ui for each i .
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Combining Information

Product

A product multi-agent subset frame is a tuple S = 〈S ,
∏

i σi 〉
where 〈S , σi 〉 is a subset space frame for each agent i in the set of
agents I .

(s, ~U) is a neighborhood situation if s ∈ Ui for each i .
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Multi-agent in SSL: an effort

Combining Information

Product: Semantics

s, ~U |= p if and only if p ∈ v(A)

s, ~U |= ϕ ∧ ψ if and only if s, ~U |= ϕ and s, ~U |= ψ.

s, ~U |= ¬ϕ if and only if s, ~U 6|= ϕ.

s, ~U |= Kiϕ if and only if t, ~U |= ϕ for all t ∈ ∩iUi ∈ σi .

s, ~U |= �iϕ if and only if s, ~V |= ϕ for all ~V where Uj = Vj

for j 6= i , and Vi ⊆ Ui .

Proposition

COMK and COM� together with CHRK and CHR� are valid in
product subset spaces.

COMK and COM�will denote the commutativity property for the knowledge operator

and for the shrinking operator respectively. In a similar manner, CHRK will denote the

Church-Russer property for the knowledge operator, that is K1L2ϕ↔ L2K1ϕ and

CHR� is defined likewise.
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Multi-agent in SSL: an effort

Combining Information

Multi Direct Products: Semantics

The product of the frames S1 = 〈S1, σ1〉 and S2 = 〈S2, σ2〉 is the
frame F1 ×F2 = 〈S1 × S2, σh, σv 〉 in which for each u, u′ ∈ U and
v , v ′ ∈ V and for each U ′ ⊆ U and V ′ ⊆ V , we then have,

(u, v),U × V |= K1ϕ iff for all u′ ∈ U : (u′, v),U × V |= ϕ
(u, v),U × V |= �1ϕ iff for all u ∈ U ′ ⊆ U : (u, v),U ′ × V |= ϕ

(u, v),U × V |= K2ϕ iff for all v ′ ∈ V : (u, v ′),U × V |= ϕ
(u, v),U × V |= �2ϕ iff for all v ∈ V ′ ⊆ V : (u, v),U × V ′ |= ϕ
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Multi-agent in SSL: an effort

Combining Information

Multi Direct Products: Observations

Proposition

COMK (K1K2ϕ↔ K2K1ϕ) and COM� (�2�1ϕ↔ �1�2ϕ) are
valid in topologic products. Moreover, they can be generalized to
n-agents case.

Proposition

CHRK (K1L2ϕ↔ L2K1ϕ) and CHR� (�1♦2ϕ↔ ♦2�1ϕ) are valid
in topologic products.
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Multi-agent in SSL: an effort

Common Knowledge

Common Knowledge in SSL

Simplest definition:

Cϕ ≡ ϕ ∧ ♦Kϕ ∧ ♦K♦Kϕ . . .

s,U |= Cϕ :=
∀n ∈ N and t ∈ S , we then have:
if U0,U1, . . . ,Un ∈ σ satisfy U0 = U and Ui ∩ Ui+1 6= ∅
for i = 0, . . . , n − 1 and, t ∈ Un, then t,Un |= ϕ

The following is the iteration definition of common knowledge.

s,U |= Cϕ ≡ s,U |= KO . . .KO︸ ︷︷ ︸
n−times

ϕ
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Multi-agent in SSL: an effort

Common Knowledge

Relativized Common Knowledge in SSL

s,U |= C(ϕ,ψ) :=
∀n ∈ N and t ∈ S , we then have:
if U0ϕ , . . . ,Unϕ ∈ σ satisfy U0ϕ = U and Uiϕ ∩ U(i+1)ϕ 6= ∅
for i = 1, . . . , n − 1, and t ∈ Unϕ , then t,Unϕ |= ψ
where Uiϕ is Ui ∩ (ϕ).

More intuitively:

s,U |= C(ϕ,ψ) ≡ s,Uϕ |= KO . . .KO︸ ︷︷ ︸
n−times

ψ
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Multi-agent in SSL: an effort

Common Knowledge

Common Knowledge in Topologic PAL

Theorem
[ϕ]C(ψ, χ)↔ (ϕ→ C(ϕ ∧ [ϕ]ψ, [ϕ]χ)) is sound.

Theorem
Topologic public announcement logic with overlap and relativized
common knowledge operators is complete.
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Conclusion and Future Work

Problems

Obstacles!

Multi-agent: not very clear how the agents should merge their
information. The behavior of neighborhood situations in
multi-agent case is not as straight forward as in the case of Kripke
structures.

Cross-Axiom Frames: the relation between cross axiom frames
and subset frames is not clear. It is especially vague how to obtain
a subset frame from cross axiom frame.

Observation Sets: it is not clear if we are supposed to consider all
the possible observations or some selected or given collection of
observations for a given set. This does not change anything as the
technical results do not depend on this. However, from a
semantical point of view, we believe, an agent cannot possibly
consider the all possible observations in any case.
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Conclusion and Future Work

What we did..

Recap of the Results

I We imported some simple truth preserving operations.

I Introduced the game theoretical semantics

I Considered PAL in SSL

I Introduced controlled shrinking motivated by philosophy of
science

I Considered multi-agent semantics in SSL
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Conclusion and Future Work

Future Work

Future Work

Complexity of various multi-agent subset spaces: with or
without common knowledge operator.

Universal Modalities: it is also possible to extend the language
with the universal modalities E and A in order to increase the
expressivity.
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Thanks!

Thanks for your attention!

Talk slides and the thesis are available at:

www.illc.uva.nl/∼cbaskent


