Completeness of Public Announcement Logic in Topological Spaces

Can BAŞKENT

The Graduate Center of the City University of New York cbaskent@gc.cuny.edu www.canbaskent.net

Association of Symbolic Logic - 2010 North America Annual Meeting, George Washington University, Washington DC

March 18, 2010

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

	Topology	Completeness	
00 000000			

Outlook of the Talk

- Public Announcement Logic
- Topological Semantics
- Completeness
- Conclusion

C. Başkent

PAL	Topology	Completeness	
• 0 000000			
Introduction			

What is Public Announcement Logic?

A paradigm for state-elimination based dynamic epistemology and communication! (Plaza, 1989; van Ditmarsch *et al.*, 2007)

- 1. A truthful announcement φ is made (by an external agent) to the "public", i.e. to all of the agents/knowers,
- 2. The announcement φ becomes ${\bf common\ knowledge}$ among the agents,
- 3. The agents "update" their epistemic status by state elimination,
- 4. The agent eliminate the states that do not agree with the announcement

2010 ASL Meeting, GWU

▲ □ ▶ ▲ □ ▶ ▲

PAL	Topology	Completeness	
00 000000			
Introduction			

A Simple Illustration

where $[\varphi]$ is the extension of φ , i.e. the points where φ is true.

э

2010 ASL Meeting, GWU

C. Baskent

PAL ○○ ●○○○○○	Topology 00000	Completeness 0000	
Basics			

Language

The language of public announcement logic (PAL) is that of epistemic logic extended with an additional announcement operator.

$$\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \Box_i \varphi \mid [\varphi] \varphi$$

here $\Box_i \varphi$ and $[\varphi] \psi$ will read "the agent *i* knows φ " and "after the public announcement of φ , the formula ψ is true" respectively.

2010 ASL Meeting, GWU

PAL ○○ ○●○○○○	Topology 00000	Completeness 0000	
Basics			

Semantics

Let $\mathcal{M} = \langle W, \{R_i\}_{i \in I}, V \rangle$ be a model where W is a non-empty set, $\{R_i\}_{i \in I}$ is a collection of binary relations defined on W for each agent i, and V is a valuation sending propositional variables to subsets of W, and i is an agent from the set of agents I. For atomic propositions, negations and conjunctions, the semantic definition is as usual.

PAL	Topology	Completeness	
00000			
Basics			

Semantics

For modal operators, we have the following semantics:

$$\begin{array}{ll} \mathcal{M}, w \models \Box_i \varphi & \text{iff} & \mathcal{M}, v \models \varphi \text{ for each } v \text{ such that } (w, v) \in R_i \\ \mathcal{M}, w \models [\varphi] \psi & \text{iff} & \mathcal{M}, w \models \varphi \text{ implies } \mathcal{M} | \varphi, w \models \psi \end{array}$$

Here the updated model $\mathcal{M}|\varphi = \langle W', R', V' \rangle$ is defined by restricting \mathcal{M} to those states where φ holds. (Plaza, 1989)

2010 ASL Meeting, GWU

< ロ > < 同 > < 回 > < 回

PAL ○○ ○○○●○○	Topology 00000	Completeness 0000	
Basics			

Reduction Axioms

The axiom system of PAL is that of multi-modal (multi-agent) S5 epistemic logic with the following additional ones.

 $\begin{array}{ll} Atoms & [\varphi]p \leftrightarrow (\varphi \rightarrow p) \\ Partial \ Functionality & [\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[\varphi]\psi) \\ Distribution & [\varphi](\psi\wedge\chi)\leftrightarrow([\varphi]\psi\wedge[\varphi]\chi) \\ Knowledge \ Announcement & [\varphi]\Box_i\psi\leftrightarrow(\varphi\rightarrow\Box_i[\varphi]\psi) \end{array}$

The additional rule of inference for $[\cdot]$ is called the *announcement* generalization and is described as follows.

From $\vdash \psi$, derive $\vdash [\varphi]\psi$.

2010 ASL Meeting, GWU

< ロ > < 同 > < 回 > < 回

PAL	Topology	Completeness	
00 0000●0			
Basics			

Soundness and Completeness

Soundness

Soundness of the axioms is a simple and fun exercise.

Completeness

Completeness is easy.

Axioms show that any formula in the new language is reducible to the basic modal language. Therefore, PAL is *equi-expressible* as the basic modal logic (Plaza, 1989).

Thus, the completeness follows immediately.

2010 ASL Meeting, GWU

< 17 >

→

PAL	Topology	Completeness	
00 000000			
Basics			

Some Properties

$$\blacktriangleright (\varphi \to [\varphi]\psi) \leftrightarrow [\varphi]\psi$$

$$\blacktriangleright \ [\varphi \land [\varphi]\psi]\chi \leftrightarrow [\varphi][\psi]\chi$$

(van Ditmarsch et al., 2007)

C. Başkent

	Topology	Completeness	
00 000000	00000		
Basics			

Topological Definitions

A topological space $S = \langle S, \sigma \rangle$ is a structure with a set S and a collection σ of subsets of S satisfying the following axioms:

- 1. The empty set and S are in σ .
- 2. The collection σ is closed under arbitrary union.
- 3. The collection σ is closed under finite intersection.

PAL 00 000000	Topology o●ooo	Completeness 0000	
Basics			

Interior Operator

Recall now that the topological interior operator \mathbb{I} satisfies the following properties for each open $X, Y \in \sigma$:

1.
$$\mathbb{I}(X) = X$$

2.
$$\mathbb{I}(X \cap Y) = \mathbb{I}(X) \cap \mathbb{I}(Y)$$

3.
$$\mathbb{I}(\mathbb{I}(X)) = \mathbb{I}(X)$$

In topological models, we will use I operator for modality instead of the usual operator \Box .

2010 ASL Meeting, GWU

(日) (同) (三) (

PAL 00 000000	Topology 00●00	Completeness 0000	
Basics			

Logical Definitions

A topological model \mathcal{M} is a triple $\langle S, \sigma, v \rangle$ where $\mathcal{S} = \langle S, \sigma \rangle$ is a topological space, and v is a valuation function sending propositional letters to the subsets of S, i.e. $v : P \to \wp(S)$.

= nar

2010 ASL Meeting, GWU

イロト イポト イヨト イヨト

	Topology	Completeness	
00 000000	00000		
Basics			

Topological vs Kripkean Semantics

Topological $\mathcal{M}, s \models I\varphi$ iff $\exists U \in \sigma(s \in U \land \forall t \in U, \mathcal{M}, t \models \varphi)$ Kripkean $\mathcal{M}, s \models \Box \varphi$ iff $\forall t \in U(sRt \rightarrow \mathcal{M}, t \models \varphi)$

Complexity and Expressivity: Topological Semantics is Σ_2 as opposed to Π_1 Kripke Semantics.

2010 ASL Meeting, GWU

< ロ > < 同 > < 回 > < 回 >

C. Başkent

	Topology	Completeness	
00 000000	00000		
Basics			

Correspondence: Topological vs Kripke Frames

Every S4 Kripke frame $\langle S, R \rangle$ gives rise to a topological space $\langle S, \sigma_R \rangle$, where σ_R is the set of all upward closed subsets of the given frame. It is easy to see that the empty set and S are in σ_R , and furthermore arbitrary unions and finite intersections of upward closed sets are still upward closed. Hence, σ_R is a (Alexandroff) topology.

Note that Alexandroff spaces are those topological spaces in which intersection of any family of opens is again an open.

Image: A math a math

2010 ASL Meeting, GWU

For the converse direction, put $sR_{\sigma}t$ if $s \in Clo(t)$. It is an easy exercise to observe that R_{σ} is reflexive and transitive.

PAL 00 000000	Topology 00000	Completeness ●000	
Building Up			

Some Lemmas

Let σ be a topology on S. For a formula φ , define $S_{\varphi} = S \cap (\varphi)$ where (φ) is the extension of φ , i.e the points where φ is true. Similarly, define $v_{\varphi} = v \cap S_{\varphi}$ for the valuation.

Lemma

Let σ be a topology. Then, $\sigma_{\varphi} = \{O \cap S_{\varphi} : O \in \sigma\}$ is a topology, too.

Proof.

C. Baskent

An easy exercise.

< ロ > < 同 > < 回 > < 回

PAL 00 000000	Topology 00000	Completeness ⊙●○○	
Building Up			

Definitions

We can now define public announcement operator in topologic setting.

Let $\mathcal{M} = \langle S, \sigma, v \rangle$ be a topological model. Define $\mathcal{M}_{\varphi} := \langle S_{\varphi}, \sigma_{\varphi}, v_{\varphi} \rangle$ as before.

Definition (Public Announcements)

 $\mathcal{M}, \mathsf{s} \models [\varphi] \psi \text{ if and only if } \mathcal{M}, \mathsf{s} \models \varphi \text{ implies } \mathcal{M}_{\varphi}, \mathsf{s} \models \psi$

2010 ASL Meeting, GWU

< ロ > < 同 > < 回 > < 回

PAL 00 000000	Topology 00000	Completeness 00●0	
Building Up			

Completeness

Reduction axioms that we have discussed earlier work perfectly in topological spaces. We will only deal with the modal reduction here.

$$[\varphi] \mathsf{I} \psi \leftrightarrow (\varphi \to \mathsf{I}[\varphi] \psi)$$

Theorem

PAL in topological spaces is complete with respect to the earlier axiomatization.

PAL 00 000000	Topology 00000	Completeness 000●	
Building Up			

Compeleteness: Proof

Proof.

$$\mathcal{M}, s \models [\varphi] \mathsf{I} \psi$$
 iff $\mathcal{M}, s \models \varphi \to \mathcal{M}_{\varphi}, s \models \mathsf{I} \psi$
iff $\mathcal{M}, s \models \varphi \to$
 $\exists U_{\varphi} \in \sigma_{\varphi}(s \in U_{\varphi} \land \forall t' \in U_{\varphi}, \mathcal{M}_{\varphi}, t' \models \psi)$
(so far, definitions)
iff $\mathcal{M}, s \models \varphi \to$
 $\exists U \in \sigma(s \in U \land \forall t \in U(\mathcal{M}, t \models \varphi \to \mathcal{M}_{\varphi}, t \models \psi))$
(since $U_{\varphi} = U \cap (\varphi)$ for some $U \in \sigma$)
iff $\mathcal{M}, s \models \varphi \to$
 $\exists U \in \sigma(s \in U \land \forall t \in U(\mathcal{M}, t \models [\varphi]\psi))$
iff $\mathcal{M}, s \models \varphi \to \mathcal{M}, s \models \mathsf{I}[\varphi]\psi$
iff $\mathcal{M}, s \models \varphi \to \mathsf{I}[\varphi]\psi$

2010 ASL Meeting, GWU

Geometry of Dynamic Epistemology

Future Work	PAL 00 000000	Topology 00000	Completeness 0000	Conclusion •	
	Future Work				

Future Work

This is a first step to formalize *change* in topological modal logic. However, there is a lot left to do.

- What is the connection between topologies and fixed-points?
- How can we define fixed-point logics in topological settings?
- How can we use continuous functions and homotopies to represent knowledge change?
- Connection with weak topologies (Başkent, 2007)?

2010 ASL Meeting, GWU

▲ @ ▶ ▲ @ ▶ ▲

PAL 00 000000	Topology 00000	Completeness 0000	References ○
References			

References I

BAŞKENT, CAN. 2007 (July).

Topics in Subset Space Logic.

 $\mathsf{M}.\mathsf{Phil}.$ thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam.

Plaza, Jan A. 1989.

Logic of Public Communication.

Pages 201–216 of: EMRICH, M. L., PFEIFER, M. S., HADZIKADIC, M., & RAS, Z. W. (eds), 4th International Symposium on Methodologies for Intelligent Systems.

VAN DITMARSCH, HANS, VAN DER HOEK, WIEBE, & KOOI, BARTELD. 2007. Dynamic Epistemic Logic. Springer.

2010 ASL Meeting, GWU

< ロ > < 同 > < 回 > < 回

	Topology	Completeness	References
00 000000			•
Thanks!			

Thanks for your attention!

Talk slides and the paper are available at:

www.canbaskent.net

2010 ASL Meeting, GWU

• • • • •

C. Başkent