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Introduction

What is Public Announcement Logic?

A paradigm for state-elimination based dynamic epistemology and
communication! (Plaza, 1989; van Ditmarsch et al., 2007)

1. A truthful announcement ϕ is made (by an external agent) to
the “public”, i.e. to all of the agents/knowers,

2. The announcement ϕ becomes common knowledge among
the agents,

3. The agents “update” their epistemic status by state
elimination,

4. The agent eliminate the states that do not agree with the
announcement
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Introduction

A Simple Illustration
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where [ϕ] is the extension of ϕ, i.e. the points where ϕ is true.
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Basics

Language

The language of public announcement logic (PAL) is that of
epistemic logic extended with an additional announcement
operator.

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �iϕ | [ϕ]ϕ

here �iϕ and [ϕ]ψ will read “the agent i knows ϕ” and “after the
public announcement of ϕ, the formula ψ is true” respectively.
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Basics

Semantics

Let M = 〈W , {Ri}i∈I ,V 〉 be a model where W is a non-empty
set, {Ri}i∈I is a collection of binary relations defined on W for
each agent i , and V is a valuation sending propositional variables
to subsets of W , and i is an agent from the set of agents I .
For atomic propositions, negations and conjunctions, the semantic
definition is as usual.
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Basics

Semantics

For modal operators, we have the following semantics:

M,w |= �iϕ iff M, v |= ϕ for each v such that (w , v) ∈ Ri

M,w |= [ϕ]ψ iff M,w |= ϕ implies M|ϕ,w |= ψ

Here the updated model M|ϕ = 〈W ′,R ′,V ′〉 is defined by
restricting M to those states where ϕ holds.
(Plaza, 1989)
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Basics

Reduction Axioms

The axiom system of PAL is that of multi-modal (multi-agent) S5
epistemic logic with the following additional ones.

Atoms [ϕ]p ↔ (ϕ→ p)
Partial Functionality [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

Distribution [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ)
Knowledge Announcement [ϕ]�iψ ↔ (ϕ→ �i [ϕ]ψ)

The additional rule of inference for [·] is called the announcement
generalization and is described as follows.

From ` ψ, derive ` [ϕ]ψ.
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Basics

Soundness and Completeness

Soundness
Soundness of the axioms is a simple and fun exercise.

Completeness

Completeness is easy.
Axioms show that any formula in the new language is reducible to
the basic modal language. Therefore, PAL is equi-expressible as
the basic modal logic (Plaza, 1989).
Thus, the completeness follows immediately.
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Basics

Some Properties

I (ϕ→ [ϕ]ψ)↔ [ϕ]ψ

I [ϕ ∧ [ϕ]ψ]χ↔ [ϕ][ψ]χ

(van Ditmarsch et al., 2007)
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Basics

Topological Definitions

A topological space S = 〈S , σ〉 is a structure with a set S and a
collection σ of subsets of S satisfying the following axioms:

1. The empty set and S are in σ.

2. The collection σ is closed under arbitrary union.

3. The collection σ is closed under finite intersection.
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Basics

Interior Operator

Recall now that the topological interior operator I satisfies the
following properties for each open X ,Y ∈ σ:

1. I(X ) = X

2. I(X ∩ Y ) = I(X ) ∩ I(Y )

3. I(I(X )) = I(X )

In topological models, we will use I operator for modality instead of
the usual operator �.
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Basics

Logical Definitions

A topological model M is a triple 〈S , σ, v〉 where S = 〈S , σ〉 is a
topological space, and v is a valuation function sending
propositional letters to the subsets of S , i.e. v : P → ℘(S).

Definition (Topological Semantics)
M, s |= p iff s ∈ v(p) for p ∈ P
M, s |= ¬ϕ iff not M, s |= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= Iϕ iff ∃U ∈ σ(s ∈ U ∧ ∀t ∈ U,M, t |= ϕ)

The C operator can then be defined accordingly:
M, s |= Cϕ iff ∀U ∈ σ(s ∈ U → ∃t ∈ U,M, t |= ϕ)
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Basics

Topological vs Kripkean Semantics

Topological

M, s |= Iϕ iff ∃U ∈ σ(s ∈ U ∧ ∀t ∈ U,M, t |= ϕ)

Kripkean

M, s |= �ϕ iff ∀t ∈ U(sRt →M, t |= ϕ)

Complexity and Expressivity: Topological Semantics is Σ2 as
opposed to Π1 Kripke Semantics.
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Basics

Correspondence: Topological vs Kripke Frames

Every S4 Kripke frame 〈S ,R〉 gives rise to a topological space
〈S , σR〉, where σR is the set of all upward closed subsets of the
given frame. It is easy to see that the empty set and S are in σR ,
and furthermore arbitrary unions and finite intersections of upward
closed sets are still upward closed. Hence, σR is a (Alexandroff)
topology.
Note that Alexandroff spaces are those topological spaces in which
intersection of any family of opens is again an open.
For the converse direction, put sRσt if s ∈ Clo(t). It is an easy
exercise to observe that Rσ is reflexive and transitive.
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Building Up

Some Lemmas

Let σ be a topology on S . For a formula ϕ, define Sϕ = S ∩ (ϕ)
where (ϕ) is the extension of ϕ, i.e the points where ϕ is true.
Similarly, define vϕ = v ∩ Sϕ for the valuation.

Lemma
Let σ be a topology. Then, σϕ = {O ∩ Sϕ : O ∈ σ} is a topology,
too.

Proof.
An easy exercise.
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Building Up

Definitions

We can now define public announcement operator in topologic
setting.
Let M = 〈S , σ, v〉 be a topological model.
Define Mϕ := 〈Sϕ, σϕ, vϕ〉 as before.

Definition (Public Announcements)

M, s |= [ϕ]ψ if and only if M, s |= ϕ implies Mϕ, s |= ψ
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Building Up

Completeness

Reduction axioms that we have discussed earlier work perfectly in
topological spaces. We will only deal with the modal reduction
here.

[ϕ]Iψ ↔ (ϕ→ I[ϕ]ψ)

Theorem
PAL in topological spaces is complete with respect to the earlier
axiomatization.
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Building Up

Compeleteness: Proof

Proof.
M, s |= [ϕ]Iψ iff M, s |= ϕ→Mϕ, s |= Iψ

iff M, s |= ϕ→
∃Uϕ ∈ σϕ(s ∈ Uϕ ∧ ∀t ′ ∈ Uϕ,Mϕ, t

′ |= ψ)
(so far, definitions)

iff M, s |= ϕ→
∃U ∈ σ(s ∈ U ∧ ∀t ∈ U(M, t |= ϕ→Mϕ, t |= ψ))
(since Uϕ = U ∩ (ϕ) for some U ∈ σ)

iff M, s |= ϕ→
∃U ∈ σ(s ∈ U ∧ ∀t ∈ U(M, t |= [ϕ]ψ))

iff M, s |= ϕ→M, s |= I[ϕ]ψ
iff M, s |= ϕ→ I[ϕ]ψ
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Future Work

Future Work

This is a first step to formalize change in topological modal logic.
However, there is a lot left to do.

I What is the connection between topologies and fixed-points?

I How can we define fixed-point logics in topological settings?

I How can we use continuous functions and homotopies to
represent knowledge change?

I Connection with weak topologies (Başkent, 2007)?
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Thanks!

Thanks for your attention!

Talk slides and the paper are available at:

www.canbaskent.net
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