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Abstract. In this paper, we introduce public announcement logic in different geometric frameworks.
First, we consider topological models, and then extend our discussion to a more expressive model,
namely, subset spacemodels. Furthermore,we prove the completeness of public announcement logic
in those frameworks. After that, we apply our results to different issues: announcement stabilization,
backward induction and persistence.
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1. Introduction

Public announcement logic is a well-known and well-studied example of dynamic epistemic logics
[35, 22]. Dynamic epistemic logics are set out to formalize knowledge and knowledge changes in usually
multi-agent settings by defining and introducing different ways of updates and interaction. The contribu-
tion of public announcement logic (PAL, henceforth) to the field of knowledge representation is mostly
due to its succinctness and clarity in reflecting the intuition as it does not increase the expressiveness of
the basic epistemic logic [28]. PAL updates the epistemic models by the announcements made by a truth-
ful external agent. After the truthful announcement, the model is updated by eliminating the states that
do not agree with the announcement. PAL has many applications in the fields of formal approaches to
∗Address for correspondence: Department of Computer Science, The Graduate Center, The City University of New York, 365
Fifth Avenue, New York, NY 10016, USA
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social interaction, dynamic logics, knowledge representation and belief revision [5, 6, 12, 16]. Extensive
applications of PAL to different fields and frameworks have made PAL a rather familiar framework to
many researchers. Moreover, for simplicity, virtually almost all applications of PAL make use of Kripke
models for knowledge representation. However, as it is very well known, Kripke models are not the only
representational tool for modal and epistemic logics.

In this work, we consider PAL in two different geometrical frameworks: topological models for
modal logic and subset space logic. Topological models are not new to modal logics, indeed they are
the first models for modal logic [29, 30]. The past decades have witnessed a revival of academic interest
towards the topological models for modal logics in many different frameworks [1, 14, 15, 20]. However,
to the best of our knowledge, topological models have not been applied to dynamic epistemic logics.
Yet, there have been some influential works on the notion of common knowledge in topological models
which has motivated the current paper [18]. In that work, it was shown that the different definitions of
common knowledge diverge in topological models even though these definitions are equivalent in Kripke
structures, based on Barwise’s earlier investigation [7]. Nevertheless, the authors did not seem to take
the next immediate step to discuss dynamic epistemologies in that framework. This is one of our goals in
this paper: to apply topological reasoning to dynamic epistemological cases, and present the immediate
completeness results. The second framework that we discuss, subset space logic, is a rather weak yet
expressive geometrical structure dispensing with the topological structure [32, 34]. Subset space logic
has been introduced to reason about the topological notion of closeness and the dynamic notion of effort
in epistemic situations. In this paper, we also define PAL in subset space logic with its axiomatization,
and present the completeness of PAL in subset space logics improving the initial results based on an
earlier work [8].

There are several reasons that motivate this work. First, topological models can distinguish some
epistemic properties that Kripke models cannot [18]. This is perhaps not surprising as the topological
semantics of the necessity modality has Σ2 complexity (in the form of ∃∀), while Kripkean semantics
offer Π1 complexity (in the form of ∀) for the same modality, and furthermore topologies deal with
infinite cases in a rather special way by their very own definition. Moreover, PAL update procedure
is easily defined by using well-defined topological operations giving sufficient reasons to wonder what
other different structures one may have in topological models.

The present paper is organized as follows. First, we introduce the geometrical frameworks that we
need: topological spaces and subset spaces. Then, after a brief interlude on PAL, we give the axiomati-
zations of PAL in such spaces, and their completeness. The completeness proofs are rather immediate -
which is usually the case in PAL systems. Then, we make some further observations on PAL in geomet-
ric models. Our observations will be about the stabilization of updated models, backward induction in
games and persistency as some applications of topological PAL which make some difference.

2. Geometric Models

In this section, we will briefly recall the geometric models for modal logics. What we mean by geometric
models is topological models and subset space models as they inherently are geometrical structures.
We first start with topological models and their semantics, and then discuss subset space models. Our
emphasis will be on the differences of geometric models than the Kripke models.
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2.1. Topological Semantics for Modal Logic

Topological interpretations for modal logic historically precede the relational semantics [29, 26]. More-
over, as we will observe very soon, topological semantics is arithmetically more complex than relational
semantics: the prior is Σ2 while the latter is Π1. Now, let us start by introducing the definitions.

Definition 2.1. A topological space S = 〈S,σ〉 is a structure with a set S and a collection σ of subsets
of S satisfying the following axioms:

1. The empty set and S are in σ.

2. The union of any collection of sets in σ is also in σ.

3. The intersection of a finite collection of sets in σ is also in σ.

The collection σ is said to be a topology on S. The elements of S are called points and the elements
of σ are called opens. The complements of open sets are called closed sets. Our main operator in
topological spaces is called interior operator I which returns the interior of a given set. The interior of a
set is the largest open set contained in the given set. A topological modelM is a triple 〈S,σ, v〉 where
S = 〈S,σ〉 is a topological space, and v is a valuation function assigning propositional letters to subsets
of S, i.e. v : P → ℘(S) for a countable set of propositional letters P .

The basic modal language L has a countable set of proposition letters P , a truth constant &, the
usual Boolean operators ¬ and ∧, and a modal operator !. The dual of ! is denoted by ♦ and defined
as !ϕ ≡ ¬♦¬ϕ. When we are in topological models, we will use the symbol I for ! after the interior
operator for intuitive reasons, and to prevent any future confusion. Likewise, we will use the symbol C
for ♦. The notationM, s |= ϕ will read the point s in the modelM makes the formula ϕ true. We call
the set of points that satisfy a given formula ϕ in modelM the extension of ϕ, and denote as (ϕ)M. We
will drop the superscript when the model we are in is obvious.

In topological models, the extensions of a Boolean formulas are obtained in the familiar sense. The
extension of a modal formula in model M, then, is given as follows (Iϕ)M = I((ϕ)M) - namely, the
extension of Iϕ is the interior of the extension of ϕ. Now, based on this framework, the model theoretical
semantics of modal logic in topological spaces is given as follows.

M, s |= p iff s ∈ v(p) for p ∈ P

M, s |= ¬ϕ iff M, s *|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ

M, s |= Iϕ iff ∃U ∈ σ(s ∈ U ∧ ∀t ∈ U, M, t |= ϕ)

M, s |= Cϕ iff ∀U ∈ σ(s ∈ U → ∃t ∈ U, M, t |= ϕ)

A few words on the semantics are in order here. The necessity modality Iϕ says that there is an open
set that contains the current state and the formula ϕ is true everywhere in this set. Obviously, this is a
rather complex statement, first, it requires us to determine the open set, and then check whether each
point in this open set satisfies the given formula or not. On the other hand, the possibility modality Cϕ
manifests the idea that for every open set that includes the current state, there is some point in the same
set that satisfies ϕ. This is clearly reflected in the definition: in topological semantics, the definitions of



4 C. Başkent / Public Announcement Logic in Geometric Frameworks

modal satisfaction have the form ∃∀ or ∀∃. In Kripke models, as it is well-known, the form is either ∃ or
∀.

It is been shown by McKinsey and Tarski that the modal logic of topological spaces is S4 [29].
Moreover, logics of many other topological spaces have also been investigated [1, 21, 19, 15, 14]. Fur-
thermore, recently, the topological properties of paraconsistent systems have also been investigated since
there exists a natural topological semantics for paraconsistent and paracomplete logics [11, 31].

The proof theory of the topological models is as expected: we utilize modus ponens and necessita-
tion. Basic modal logic is long to be known to be sound and complete with respect to the well-known
axiomatization of topological modal logic.

2.2. Subset Space Logic

Subset space logic (SSL, henceforth) was presented in early 90s as a bimodal logic to formalize reason-
ing about sets and points with an underlying motivation from epistemic logic [32]. One of the modal
operators of SSL is intended to quantify over the sets (!) whereas the other modal operator was intended
to quantify in the current set (K). The underlying motivation for the introduction of these two modalities
is to be able to speak about the notion of closeness. In this context, K operator is intended for the knowl-
edge operator (for one agent only, as SSL is originally presented for single-agent), and the ! modality
is intended for the effort modality. Effort can correspond to various things: computation, observation,
approximation - the procedures that can result in knowledge increase.

The language of subset space logic LS has a countable set P of propositional letters, a truth constant
&, the usual Boolean operators ¬ and ∧, and two modal operators K and !. A subset space model is a
triple S = 〈S,σ, v〉 where S is a non-empty set, σ ⊆ ℘(S) is a collection of subsets (not necessarily a
topology), v : P → ℘(S) is a valuation function. Semantics of SSL, then is given inductively as follows.

s, U |= p iff s ∈ v(p)

s, U |= ϕ ∧ ψ iff s, U |= ϕ and s, U |= ψ

s, U |= ¬ϕ iff s, U *|= ϕ

s, U |= Kϕ iff t, U |= ϕ for all t ∈ U

s,U |= !ϕ iff s, V |= ϕ for all V ∈ σ such that s ∈ V ⊆ U

The duals of ! and K are ♦ and L respectively, and defined as usual. The tuple (s, U) is called a
neighborhood situation if U is a neighborhood of s, i.e. if s ∈ U ∈ σ. The axioms of SSL reflect
the fact that the K modality is S5-like whereas the ! modality is S4-like. Moreover, we will need an
additional axiom to state the interaction between those two modalities: K!ϕ → !Kϕ. Let us now give
the complete set of axioms of SSL.

1. All the substitutional instances of the tautologies of the classical propositional logic

2. (A → !A) ∧ (¬A → !¬A) for atomic sentence A

3. K(ϕ → ψ) → (Kϕ → Kψ)

4. Kϕ → (ϕ ∧ KKϕ)

5. Lϕ → KLϕ
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6. !(ϕ → ψ) → (!ϕ → !ψ)

7. !ϕ → (ϕ ∧!!ϕ)

8. K!ϕ → !Kϕ

The rules of inference are as expected: modus ponens and necessitation for both modalities. There-
fore, subset space logic is complete and decidable [32].

Note that SSL is originally proposed as a single-agent system. There have been some attempts in the
literature to suggest a multi-agent version of it, but to the best of our knowledge, there is no intuitive and
clear presentation of a multi-agent version of SSL [8].

2.3. Public Announcement Logic

Now, let us briefly present the basic notions of public announcement logic for the completeness of our
arguments here. Public announcement logic is a way to represent changes and updates in knowledge. The
way PAL updates the epistemic states of the knower is by “state-elimination”. A truthful announcement
ϕ is made, and consequently, the agents updates their epistemic states by eliminating the possible states
where ϕ is false [35, 25, 22].

Public announcement logic is typically interpreted on multi-modal (or multi-agent) Kripke struc-
tures [35]. Notationwise, the formula [ϕ]ψ is intended to mean that after the public announcement
of ϕ, ψ holds. As usual, Ki is the epistemic modality for the agent i. Likewise, Ri is the epistemic
accessibility relation for the agent i. The language of PAL will be that of multi-agent (multi-modal)
epistemic logic with an additional public announcement operator [∗] where ∗ can be replaced with any
well-formed formula in the language of basic epistemic logic. To see the semantics of PAL, take a model
M = 〈W, {R}i∈I , V 〉 where i denotes the agents and varies over a finite set I . For atomic proposi-
tions, negations and conjunction the semantics is as usual. For modal operators, we have the following
semantics.

M, w |= Kiϕ iffM, v |= ϕ for each v such that (w, v) ∈ Ri

M, w |= [ϕ]ψ iffM, w |= ϕ impliesM|ϕ, w |= ψ

Here, the updated model M|ϕ = 〈W ′, {R′
i}i∈I , V

′〉 is defined by restricting M to those states
where ϕ holds. Hence, W ′ = W ∩ (ϕ)M; R′

i = Ri ∩ (W ′ × W ′), and finally V ′(p) = V (p) ∩ W ′.
The axiomatization of PAL is the axiomatization of S5n with additional axioms for dynamic modality.
Hence, we give the set of axioms for PAL as follows.

1. All the substitutional instances of the tautologies of the classical propositional logic

2. Ki(ϕ → ψ) → (Kiϕ → Kiψ)

3. Kiϕ → ϕ

4. Kiϕ → KiKiϕ

5. ¬Kiϕ → Ki¬Kiϕ

6. [ϕ]p ↔ (ϕ → p)
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7. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)

8. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

9. [ϕ]Kiψ ↔ (ϕ → Ki[ϕ]ψ)

The additional rule of inference which we will need for announcement modality is called the announce-
ment generalization and is described as expected: From 0 ψ, derive 0 [ϕ]ψ.

PAL is complete and decidable. The completeness proof is quite straightforward. Once the soundness
of the given axiomatization is proved, then it means that every complex formula in the language of PAL
can be reduced to a formula in the basic language of (multi-agent) epistemic logic. Since S5 epistemic
logic is long known to be complete, we immediately deduce the completeness of PAL. The argument
for decidability is also very similar as the translation from PAL to modal epistemic logic is trivially
polynomial. Therefore, it can be claimed that the only advantage of PAL is its succinctness [28].

Notice again that in this section, we have defined PAL in Kripke structures by following the literature.
In the next section, we will see how PAL is defined in geometrical models. We will start with SSL and
proceed to topological models with some further observations.

3. Subset Space PAL

In SSL, we depend on neighborhood situations (which are tuples of the form (s, U) for s ∈ U ∈ σ)
instead of the epistemic accessibility relations. Therefore, if we want to adopt public announcement
logic to the context of subset space logic, we first need to focus on the fact that the public announcements
shrink the observation sets for each agent.

Let us set a piece of notation. For a formula ϕ, recall that (ϕ)S is the extension of ϕ in the model
S = 〈S,σ, v〉. In SSL, we define (ϕ)S = {(s, U) ∈ S × σ : s ∈ U, (s, U) |= ϕ}. Now, let us define
the following projections (ϕ)S1 := {s : (s, U) ∈ (ϕ)S for some U 1 s}, and (ϕ)S2 := {U : (s, U) ∈
(ϕ)S for some s ∈ U}. We will drop the superscript when the model is obvious.

Now, assume that we are in a subset space model S = 〈S,σ, v〉. Then, after public announcement
ϕ, we will move to another subset space model Sϕ = 〈S|ϕ,σϕ, vϕ〉 where S|ϕ = (ϕ)1, and σϕ is
the reduced collection of subsets after the public announcement ϕ, and vϕ is the reduct of v on S|ϕ.
The crucial point is to construct σϕ. As we need to get rid of the refutative states, we eliminate the
points which do not satisfy ϕ for each observation set U in σ. We will disregard the empty set as
no neighborhood situations can be formed with empty set. Hence, σϕ = {Uϕ : Uϕ = U ∩ (ϕ)2 *=
∅, for each U ∈ σ}. Alternatively, we can define σϕ as follows as well: σϕ := {U ∩ (ϕ)2 : U ∈
σ}− {∅}1.

But then, how would the neighborhood situations be affected by the public announcements? Consider
the neighborhood situation (s, U) and the public announcement ϕ. Then the statement s, U |= [ϕ]ψ will
mean that after the public announcement of ϕ, ψ will hold in the neighborhood situation (s, Uϕ). So,
first we will remove the points in U which refute ϕ, and then ψ will hold in the updated set Uϕ which
was obtained from the original set U . Then the corresponding semantics can be suggested as follows:

s, U |= [ϕ]ψ iff s, U |= ϕ implies s, Uϕ |= ψ

1Thanks to the anonymous referee for pointing out this simple reformulation.
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Before checking whether this semantics satisfies the axioms of public announcement logic, let us give
the language and semantics of the topologic PAL. The language of the subset space public announcement
logic is given as follows:

p | ⊥ | ¬ϕ | ϕ ∧ ψ | !ϕ | Kϕ | [ϕ]ψ

Now, let us consider the soundness of the axioms of basic PAL that we discussed earlier in Section 2.3.
We prove that those axioms are sound in SSL.

Theorem 3.1. Axioms of the basic PAL are sound in subset space logic.

Proof:
As the atomic propositions do not depend on the neighborhood, the first axiom is satisfied by the subset
space semantics of public announcement modality. To see this, assume s, U |= [ϕ]p. So, by the semantics
s, U |= ϕ implies s, Uϕ |= p. So, s ∈ v(p). So for any set V where s ∈ V , we have s, V |= p. Hence,
s, U |= ϕ implies s, U |= p, that is s, U |= ϕ → p. Conversely, assume s, U |= ϕ → p. So, s, U |= ϕ
implies s ∈ v(p). As s, U |= ϕ, s will lie in Uϕ, thus (s, Uϕ) will be a neighborhood situation. Thus,
s, Uϕ |= p. Then, we conclude s, U |= [ϕ]p.

The axioms for negation and conjunction are also straightforward formula manipulations and hence
skipped.

The important reduction axiom is the knowledge announcement axiom. Assume, s, U |= [ϕ]Kψ.
Suppose further that s, U |= ϕ. Then we have the following.

s, U |= [ϕ]Kψ iff s, Uϕ |= Kψ

iff for each tϕ ∈ Uϕ, we have tϕ, Uϕ |= ψ

iff for each t ∈ U , t, U |= ϕ

implies t, U |= [ϕ]ψ

iff s, U |= K(ϕ → [ϕ]ψ)

iff s, U |= K[ϕ]ψ

Thence, the above axioms are sound for the subset space semantics of public announcement logic.
56

Now, recall that SSL has an indispensable modal operator !. One can wonder whether we can have a
reduction axiom for it as well. We start by considering the statement [ϕ]!ψ ↔ (ϕ → ![ϕ]ψ). Assume,
s, U |= [ϕ]!ψ. Suppose further that s, U |= ϕ. Then, we deduce the following.

s, U |= [ϕ]!ψ iff s, Uϕ |= !ψ

iff for each Vϕ ⊆ Uϕ we have s, Vϕ |= ψ

iff for each V ⊆ U , s, V |= ϕ

implies s, V |= [ϕ]ψ

iff s, U |= !(ϕ → [ϕ]ψ)

iff s, U |= ![ϕ]ψ

Now, it is easy to see that the following axiomatize the subset space PAL together with the axiomatization
of SSL:
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1. [ϕ]p ↔ (ϕ → p)

2. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)

3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Kψ ↔ (ϕ → K[ϕ]ψ)

5. [ϕ]!ψ ↔ (ϕ → ![ϕ]ψ)

Referring to the above discussions, the completeness of subset space PAL follows easily.

Theorem 3.2. PAL in subset space models is complete with respect to the axiom system given above.

Proof:
By reduction axioms we can reduce each formula in the language of topologic PAL to a formula in the
language of SSL. As SSL is complete, so is PAL in subset space models. 56

By the same idea, we can import the decidability result.

Theorem 3.3. PAL in subset space models is decidable.

4. Topological PAL

4.1. Single Agent Topological PAL

We can use the similar ideas to give an account of PAL in topological spaces. Let T = 〈T, τ, v〉 be a
topological model and ϕ be a public announcement. We now need to obtain the topological model Tϕ
which is the updated model after the announcement. Define Tϕ = 〈Tϕ, τϕ, vϕ〉 where Tϕ = T ∩ (ϕ),
τϕ = {O ∩ Tϕ : O ∈ τ} and vϕ = v ∩ Tϕ. We now need to verify that τϕ is a topology, indeed
the induced topology. For the sake of the completeness of our arguments in this paper, let us give the
immediate proof here.

Proposition 4.1. If τ is a topology, then τϕ = {O ∩ Tϕ : O ∈ τ} is a topology as well.

Proof:
Clearly, the empty set is in τϕ as τ is a topology. As τ is a topology on T , we have T ∈ τ . Thus, T ∩Tϕ,
namely Tϕ, is in τϕ. Consider

⋃∞
i Ui where Ui ∈ τϕ. For each i, we have Ui = Oi ∩ Tϕ for some

Oi ∈ τ . Thus,
⋃∞

i Ui = Tϕ ∩
⋃∞

i Oi. Since τ is a topology,
⋃∞

i Oi ∈ τ . Thus, Tϕ ∩
⋃∞

i Oi ∈ τϕ
yielding the fact that

⋃∞
i Ui ∈ τϕ. Similarly, consider

⋂n
i Ui where Ui ∈ τϕ for some n < ω. Since

Ui = Oi ∩ Tϕ for some Oi ∈ τ , we similarly observe that
⋂n

i Ui =
⋂n

i (Oi ∩ Tϕ) = Tϕ ∩
⋂n

i Oi. Since
τ is a topology,

⋂n
i Oi ∈ τ , thus,

⋂n
i Ui ∈ τϕ. 56

It is important to notice here that only modal formulas necessarily yield open or closed extensions.
The extension of Booleans, then, may or may not be a topological set as it solely depends on the model
and the valuation.



C. Başkent / Public Announcement Logic in Geometric Frameworks 9

Now, when we restrict the carrier set of the topology to a subset of it, we still get a topology immedi-
ately and easily. Based on this simple observation, we can give a semantics for the public announcements
in topological models.

T , s |= [ϕ]ψ iff T , s |= ϕ implies Tϕ, s |= ψ

In a similar fashion, we can expect that the reduction axioms work in topological spaces. The reduc-
tion axioms for atoms and Booleans are quite straight-forward. So, consider the reduction axiom for the
interior modality given as follows: [ϕ]Iψ ↔ (ϕ → I[ϕ]ψ).

Let T , s |= [ϕ]Iψ which, by definition means T , s |= ϕ implies Tϕ, s |= Iψ. If we spell out the
topological interior modality, we get ∃Uϕ 1 s ∈ τϕ s.t. ∀t ∈ Uϕ,Tϕ, t |= ψ. By definition, since
Uϕ ∈ τϕ, it means that there is an open U ∈ τ such that Uϕ = U ∩ (ϕ). Under the assumption that
T , s |= ϕ, we observe that ∃U 1 s ∈ τ (as we just constructed it), such that after the announcement ϕ,
the non-eliminated points in U (namely, the ones in Uϕ) will satisfy ψ. Thus, we get T , s |= ϕ → I[ϕ]ψ.

The other direction is very similar and hence we leave it to the reader. Therefore, the reduction
axioms for PAL in topological spaces are given as follows.

1. [ϕ]p ↔ (ϕ → p)

2. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)

3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Iψ ↔ (ϕ → I[ϕ]ψ)

As a result, all the complex formulas involving the PAL operator can be reduced to a simpler one.
This algorithm directly shows the completeness of PAL in topological spaces by reducing each formula
in the language of topological PAL to the language of basic topological modal logic. Thus, the result
follows.

Theorem 4.1. Public announcement logic in topological spaces is complete with respect to the axioma-
tization given.

By the same idea, we can import the decidability result.

Theorem 4.2. Public announcement logic in topological models is decidable.

4.2. Product Topological PAL

There are variety of ways to merge given topological models to express the epistemic interaction between
them: products, sums, fusions etc [24]. In this section, we focus on one of such methods, product
topologies, and discuss how public announcements are defined in them. Product topological frameworks
for multi-agent epistemic logics have already been discussed in the literature widely [15, 18]. Therefore,
our treatment of the subject will be based on these works. Based on this basic formalism, we will then
introduce public announcement logic. The idea is quite straight-forward. We are given two topologies
(possibly with different spaces) with a modal (epistemic, doxastic etc) model on them. Then, by the
standard techniques in the literature, we merge them. After that, we discuss how public announcements
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work in this unified structure. Our contribution here is to define public announcements in combined
topological spaces, and show the completeness of our axiomatization.

Let T = 〈T, τ〉 and T ′ = 〈T ′, τ ′〉 be two given topological spaces. Now, we introduce some
definitions. Let X ⊆ T × T ′. We call X horizontally open (h-open) if for any (x, y) ∈ X, there is a
U ∈ τ such that x ∈ U , and U × {y} ⊆ X. In a similar fashion, we call X vertically open (v-open) if or
any (x, y) ∈ X, there is a U ′ ∈ τ ′ such that y ∈ U ′, and {x} × U ′ ⊆ X. These notions can be seen as
one dimensional projections of openness and closure that we will need soon.

Now, given two topological spaces T = 〈T, τ〉 and T ′ = 〈T ′, τ ′〉, let us associate two modal
operators I and I′ respectively to these models. Then, we can obtain a product topology in a language with
the two aforementioned modalities. The product model, then, is of the form 〈T × T ′, τ, τ ′〉. Therefore,
we consider the cross product × as a way to represent model interaction among epistemic agents which
gives us a model with two-dimensional space, and two topologies. The semantics of those modalities,
then, are given as follows.

(x, y) |= Iϕ iff ∃U ∈ τ , x ∈ U and ∀u ∈ U , (u, y) |= ϕ

(x, y) |= I′ϕ iff ∃U ′ ∈ τ ′, y ∈ U ′ and ∀u′ ∈ U ′, (x, u′) |= ϕ

Here, given a tuple (x, y), the modality I ranges over the first component while the modality I′ ranges
over the second. In other words, we localize the product with respect to the given original topologies.

It has been shown that the fusion logic S4⊕S4 is complete with respect to products of arbitrary topo-
logical spaces [18]. Then, the question is this: How would a state elimination based dynamic epistemic
paradigm work in product topologies?

Now, step by step, we will present how to define public announcements in this framework. The
difficulty lies in the fact that when we take the product of the given topological models, we increase the
dimension of the space. Then, the intuition behind defining public announcements should follow the
same idea: the announcement will update the product topology in all dimensions.

Let us now be a bit more precise. Before we start, note that here we focus on the product of two
topologies representing the interaction between two agents with different spaces and topologies, but it
can easily be generalized to n-agents. The language of product topological PAL is given as follows.

p | ¬ϕ | ϕ ∧ ϕ | K1ϕ | K2ϕ | [ϕ]ϕ

For given two topological models T = 〈T, τ, v〉 and T ′ = 〈T ′, τ ′, v〉, the product topological model
M = 〈T × T ′, τ, τ ′, v〉 has the following semantics.

M, (x, y) |= K1ϕ iff ∃U ∈ τ , x ∈ U and ∀u ∈ U , (u, y) |= ϕ

M, (x, y) |= K2ϕ iff ∃U ′ ∈ τ ′, y ∈ U ′ and ∀u′ ∈ U ′, (x, u′) |= ϕ

M, (x, y) |= [ϕ]ψ iff M, (x, y) |= ϕ impliesMϕ, (x, y) |= ψ

whereMϕ = 〈Tϕ ×T ′
ϕ, τϕ, τ

′
ϕ, vϕ〉 is the updated model. We define all Tϕ, T ′

ϕ, τϕ, τ ′ϕ, and vϕ as before.
Therefore, the following axioms axiomatize the product topological PAL together with the axioms of
S4⊕S4.

1. [ϕ]p ↔ (ϕ → p)

2. [ϕ]¬ψ ↔ (ϕ → ¬[ϕ]ψ)
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3. [ϕ](ψ ∧ χ) ↔ ([ϕ]ψ ∧ [ϕ]χ)

4. [ϕ]Kiψ ↔ (ϕ → Ki[ϕ]ψ)

Theorem 4.3. Product topological PAL is complete and decidable with respect to the given axiomatiza-
tion.

Proof:
Proof of both completeness and decidability is by reduction, and similar to the ones presented before.
Thus, we leave the details to the reader. 56

5. Applications

Now, we can briefly apply the previous discussions to some issues in public announcements, foundational
game theory and subset spaces. The purpose of such applications is to give the reader a sense how
topological frameworks might affect the aforementioned issues, and in general how dynamic epistemic
situations can be represented topologically.

5.1. Announcement Stabilization

Muddy Children game presents an interesting case for PAL [23]. The game is as follows. Let a group
of children play outside in the mud. Then, their father calls them in, and they come back in, and gather
around the father in such a way that every children sees all the others, and the father sees them all. We
also assume that there is no mirror in the room, so the children cannot see themselves. Since they were
playing in the mud, some got dirty with mud on their forehead. Father then announces that “At least one
of you has mud on his or her forehead”. If no child steps forward saying that “Yes, I do have mud on my
forehead” communicating the fact that she learned it from the announcement, the father keeps repeating
the very same announcement. The puzzle pops up when we ask how many announcement is needed for
a given number of children [22].

In that game, the model representing the epistemics of the group (see the Figure) gets updated after
each children says that she does not know if she had mud on her forehead. The model keeps updated
until the announcement is negated, and then becomes common knowledge [13]. Therefore, after each
update, we get smaller and smaller models up until the moment that the model gets stabilized in the sense
that the same announcement does not update the model any longer.

As van Benthem pointed out, this is closely related to several issues in modal and epistemic logics
[13]. First, PAL behaves like a fixed-point operator where the fixed point is the model which is stabi-
lized. Second, there seems to be a close relation between game theoretical strategy eliminations, and
solution methods based on such approaches. Therefore, it is rather important to analyze announcement
stabilization. Here, we will approach the issue from a topological angle.

For a modelM and a formula ϕ, we define the announcement limit limϕM as the first model which
is reached by successive announcements of ϕ that no longer changes after the last announcement is
made. Announcement limits exist in both finite and infinite models [17]. For instance, for any model
M , limpM = M |p for propositional variable p. Therefore, the limit model is the first updated model
when the announcement is a ground Boolean formula. In muddy children, the announcement shrinks the
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Figure 1. A model for muddy children played with 3 children a, b, c taken from [22]. The state nanbnc for
na, nb, nc ∈ {0, 1} represent that child i has mud on her forehead iff ni = 1 for i ∈ {a, b, c}. The propositionmi

means that the child i ∈ {a, b, c} has mud on her forehead. The current state is underlined.

model step by step, round by round [13]. However, sometimes in dialogue games it may take too long
to solve such puzzles until the model gets stabilized as shown by Parikh [33]. Similarly, even Zermelo
considered similar approaches in early 20. century to understand as to how long it takes for the game to
stabilize [36].

Similar to the discussions of the aforementioned authors, we now analyze how the models stabilize
in topological PAL. We know that topological models do present some differences in epistemic logical
structures. For instance, in topological models, the stabilization of the fixed-point definition2 version of
common knowledge may occur later than ordinal stage ω. However, it stabilizes in ≤ ω steps in Kripke
models [18].

2Formula ϕ is common knowledge among two-agents 1 and 2 C1,2ϕ is represented with the (largest) fixed-point definition as
follows: C1,2ϕ := νp.ϕ ∧ K1p ∧ K2p where Ki, for i = 1, 2 is the familiar knowledge operator [7].
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We also know that there are two possibilities for the limit models. Either it is empty or nonempty.
If it is empty, it means that the negation of the announcement has become common knowledge, thus
the announcement refuted itself. On the other hand, if the limit model is not empty, it means that the
announcement has become common knowledge [17].

Theorem 5.1. For some formula ϕ and some topological model M , it may take more than ω stage to
reach the limit model limϕM .

Proof:
The proof is rather immediate for those familiar with the literature. So, we just mention the basic idea
here.

First, note that it was shown that in multi-agent topological models, stabilization of common knowl-
edge with fixed-point definition may occur later than ω stage. However, in Kripke models it occurs before
ω stage [18].

Also note that it was also shown that if the limit model is not empty, the announcement has become
common knowledge [17].

Therefore, combining these two observations, we conclude that in some topological models with
non-empty limit models, the number of stage for the announcement to be common knowledge may take
more than ω steps. 56

Even if the stabilization takes longer, we can still obtain stable models by taking intersections at the
limit ordinals as a general rule [17]. Therefore, we guarantee that the update procedure will terminate.
Thus, the following result is now self-evident.

Theorem 5.2. Limit models exist in topological models.

Yet another property of topological models is the fact that the topologies are not closed under
arbitrary intersection. Then, one can ask the following question: “How does PAL work in infinite-
conjunction announcements?” The following example illustrates that point. Take the real closed interval
[−1, 1] with the usual Euclidean topology. For each n ∈ ω, define the valuation for propositions as such
v(pn) = [−1/n, 1/n]. Therefore, p1 holds in the entire space [−1, 1], while p2 holds in [−1/2, 1/2].
Consider now the announcements !

∧
n∈ω pn and

∧
n∈ω !pn. The former formula is true in the interior

I(
⋂

n∈ω pn) which is equal to empty set while the latter one is true in the intersection
⋂

n∈ω I(pn) which
is equal to the singleton {0}. Then, clearly these updates will yield the same models in Kripke models.
But, in topological models, as the extensions of two formula differ, updated models will clearly differ,
too.

5.2. Backward Induction

The fact that limit models can be attained in more than ω steps can create some problems in games.
Consider the backward induction solution where players trace back their moves to develop a winning
strategy. Notice that the Aumann’s backward induction solution assumes common knowledge of ratio-
nality [4, 27]3. Granted, there can be several philosophical and epistemic issues about the centipede
game and its relationship with rationality, but we will not pursue this direction here [2, 3].
3Although according to Halpern, Stalnaker proved otherwise [27, 39, 37, 38].
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This issue can also be approached from a dynamic epistemic perspective. Recently, it has been shown
that in any game tree modelM taken as a PAL model, limrational M is the actual subtree computed by the
backward induction procedure where the proposition rational means that “at the current node, no player
has chosen a strictly dominated move in the past coming here” [17]. Therefore, the announcement of
node-rationality produces the same result as the backward induction procedure. Each backward step in
the backward induction procedure can then be obtained by the public announcement of node rationality.
This result is quite impressive in the sense that it establishes a closer connection between communication
and rationality, and furthermore leads to several more intriguing discussions about rationality. In this
work, we refrain ourselves from pursuing this line of thought for the time being.

However, there seems to be a problem in topological models. The admissibility of limit models can
take more than ω steps in topological models as we have conjectured earlier. Therefore, the BI procedure
can take ω steps or more.

Theorem 5.3. In topological models of games, under the assumption of rationality, the backward induc-
tion procedure can take more than ω steps.

Proof:
Notice that each tree can easily be converted to a topology by taking the upward closed sets as opens. By
the previous discussion, we know that backward induction solution can be attained by obtaining the limit
models by publicly announcing the proposition rationality. Therefore, by Theorem 5.1, stabilization can
take more than ω step. Therefore, the corresponding backward induction scheme can also take more than
ω step. 56

This is indeed a problem about the attainability in infinite games: how can a player continue playing
the game when she hit the limit ordinal ω-th step in the backward induction procedure? In order not to
diverge from our current focus, we leave this question open for further research.

5.3. Persistence

Let us now discuss stabilization in SSL framework. We already have a similar notion within the SSL
context. Define persistent formula in a model M as the formula ϕ whose truth is independent from the
subsets in M . In other words, ϕ is persistent if for all states s and subsets V ⊆ U , we have s, U |= ϕ
impies s, V |= ϕ. Clearly, Boolean formulas are persistent in every model.

The significance of persistent formulas is the fact that they are independent of the subsets they occupy
which means that they are immune to the epistemics of the model. Therefore, intuitively, they should
also be immune to the changes in the model. This is interesting due to the fact that now we have a quite
strong way to tell what can and cannot be changed by public announcements in SSL.

Theorem 5.4. LetM be a model and ϕ be persistent inM . Then, for any formula χ and neighborhood
situation (s, U), if s, U |= ϕ, then s, U |= [χ]ϕ. In other words, true persistent formulas are immune to
the public announcements.

Proof:
Proof follows directly from the definitions and the fact that after the public announcement of χ, we
always have Uχ ⊆ U . 56

In other words, we can have some formulas in SSL framework that are immune to the announcements.
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6. Conclusion and Future Work

In this work, without using Kripke structures at all, we discussed PAL in two different geometrical
systems. In subset space logic, we defined dynamic axioms for both epistemic and dynamic modalities
and showed the corresponding completeness theorems. Moreover, we have applied the geometric ideas
to model stabilization and persistent formulas. This gave us the connection regarding dynamic epistemic
logics and rationality. We observed that in topological models, backward induction scheme loses its
intuitiveness. There can be some mathematical solutions to this problem. For the backwards induction
procedure that takes longer than ω, modal-mu calculus can also be considered with its natural game
theoretical semantics. Therefore, this can be a further research to see how > ω-step backward induction
scheme gets stabilized.

An interesting fact about topological models of modal logic is that only modal formulas can give an
open or a closed set. However, one can stipulate that the extension of any modal formula can be open or
dually closed. If that is the case, one can obtain an incomplete or inconsistent logic respectively [11, 31].
Moreover, some special algebras such as Heyting and co-Heyting algebras, correspond to those logics.
Therefore, the topological investigation of PAL can be carried out in these special topological spaces
or algebras to discuss public announcements in paraconsistent and paracomplete logics. This can be an
interesting direction to investigate inconsistent announcements.

Moreover, in games, topological semantics is natural to discuss infinite games as we have implied
already. Especially, when backward induction is in question, infinite games may pose a problem, and
topological models are natural candidates to analyze such situations.
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